Loading…

Universal Relations in Asymptotic Formulas for Orthogonal Polynomials

Orthogonal polynomials are oscillating functions of as for in the absolutely continuous spectrum of the corresponding Jacobi operator . We show that, irrespective of any specific assumptions on the coefficients of the operator , the amplitude and phase factors in asymptotic formulas for are linked b...

Full description

Saved in:
Bibliographic Details
Published in:Functional analysis and its applications 2021-04, Vol.55 (2), p.140-158
Main Author: Yafaev, D. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63
cites cdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63
container_end_page 158
container_issue 2
container_start_page 140
container_title Functional analysis and its applications
container_volume 55
creator Yafaev, D. R.
description Orthogonal polynomials are oscillating functions of as for in the absolutely continuous spectrum of the corresponding Jacobi operator . We show that, irrespective of any specific assumptions on the coefficients of the operator , the amplitude and phase factors in asymptotic formulas for are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator .
doi_str_mv 10.1134/S0016266321020064
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03438865v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595137190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeCTz5Uc3ObNH0cY3PCYKLuOaQ12TraZibdYP_eloo-iE8H7vnO4XIIuQX6AIDJ4xulIJgQyIAySkVyRkbAU4xlIvk5GfV23PuX5CqEHaVUpiBGZLZuyqPxQVfRq6l0W7omRGUTTcKp3reuLYto7nx9qHSIrPPRyrdbt3FNx7-46tS4utRVuCYXthNz861jsp7P3qeLeLl6ep5OlnGBnLYxig8JEjlmDAykkGeJoToVQiNmRSpyajkzhU0BIcsznVvNgDFElFbYQuCY3A-9W12pvS9r7U_K6VItJkvV3ygmKKXgR-jYu4Hde_d5MKFVO3fw3eNBMZ5xwBQy2lEwUIV3IXhjf2qBqn5Z9WfZLsOGTOjYZmP8b_P_oS8IpXhE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595137190</pqid></control><display><type>article</type><title>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</title><source>Springer Link</source><creator>Yafaev, D. R.</creator><creatorcontrib>Yafaev, D. R.</creatorcontrib><description>Orthogonal polynomials are oscillating functions of as for in the absolutely continuous spectrum of the corresponding Jacobi operator . We show that, irrespective of any specific assumptions on the coefficients of the operator , the amplitude and phase factors in asymptotic formulas for are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator .</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1134/S0016266321020064</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Analysis ; Asymptotic properties ; Classical Analysis and ODEs ; Functional Analysis ; Functions (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Polynomials ; Spectral Theory</subject><ispartof>Functional analysis and its applications, 2021-04, Vol.55 (2), p.140-158</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</citedby><cites>FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03438865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yafaev, D. R.</creatorcontrib><title>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>Orthogonal polynomials are oscillating functions of as for in the absolutely continuous spectrum of the corresponding Jacobi operator . We show that, irrespective of any specific assumptions on the coefficients of the operator , the amplitude and phase factors in asymptotic formulas for are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator .</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Classical Analysis and ODEs</subject><subject>Functional Analysis</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Spectral Theory</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeCTz5Uc3ObNH0cY3PCYKLuOaQ12TraZibdYP_eloo-iE8H7vnO4XIIuQX6AIDJ4xulIJgQyIAySkVyRkbAU4xlIvk5GfV23PuX5CqEHaVUpiBGZLZuyqPxQVfRq6l0W7omRGUTTcKp3reuLYto7nx9qHSIrPPRyrdbt3FNx7-46tS4utRVuCYXthNz861jsp7P3qeLeLl6ep5OlnGBnLYxig8JEjlmDAykkGeJoToVQiNmRSpyajkzhU0BIcsznVvNgDFElFbYQuCY3A-9W12pvS9r7U_K6VItJkvV3ygmKKXgR-jYu4Hde_d5MKFVO3fw3eNBMZ5xwBQy2lEwUIV3IXhjf2qBqn5Z9WfZLsOGTOjYZmP8b_P_oS8IpXhE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yafaev, D. R.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20210401</creationdate><title>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</title><author>Yafaev, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Classical Analysis and ODEs</topic><topic>Functional Analysis</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Spectral Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yafaev, D. R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yafaev, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>55</volume><issue>2</issue><spage>140</spage><epage>158</epage><pages>140-158</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>Orthogonal polynomials are oscillating functions of as for in the absolutely continuous spectrum of the corresponding Jacobi operator . We show that, irrespective of any specific assumptions on the coefficients of the operator , the amplitude and phase factors in asymptotic formulas for are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016266321020064</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2663
ispartof Functional analysis and its applications, 2021-04, Vol.55 (2), p.140-158
issn 0016-2663
1573-8485
language eng
recordid cdi_hal_primary_oai_HAL_hal_03438865v1
source Springer Link
subjects 14/34
639/766/189
639/766/530
639/766/747
Analysis
Asymptotic properties
Classical Analysis and ODEs
Functional Analysis
Functions (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Polynomials
Spectral Theory
title Universal Relations in Asymptotic Formulas for Orthogonal Polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Relations%20in%20Asymptotic%20Formulas%20for%20Orthogonal%20Polynomials&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Yafaev,%20D.%20R.&rft.date=2021-04-01&rft.volume=55&rft.issue=2&rft.spage=140&rft.epage=158&rft.pages=140-158&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1134/S0016266321020064&rft_dat=%3Cproquest_hal_p%3E2595137190%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595137190&rft_id=info:pmid/&rfr_iscdi=true