Loading…
Universal Relations in Asymptotic Formulas for Orthogonal Polynomials
Orthogonal polynomials are oscillating functions of as for in the absolutely continuous spectrum of the corresponding Jacobi operator . We show that, irrespective of any specific assumptions on the coefficients of the operator , the amplitude and phase factors in asymptotic formulas for are linked b...
Saved in:
Published in: | Functional analysis and its applications 2021-04, Vol.55 (2), p.140-158 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63 |
container_end_page | 158 |
container_issue | 2 |
container_start_page | 140 |
container_title | Functional analysis and its applications |
container_volume | 55 |
creator | Yafaev, D. R. |
description | Orthogonal polynomials
are oscillating functions of
as
for
in the absolutely continuous spectrum of the corresponding Jacobi operator
. We show that, irrespective of any specific assumptions on the coefficients of the operator
, the amplitude and phase factors in asymptotic formulas for
are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator
. |
doi_str_mv | 10.1134/S0016266321020064 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03438865v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595137190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeCTz5Uc3ObNH0cY3PCYKLuOaQ12TraZibdYP_eloo-iE8H7vnO4XIIuQX6AIDJ4xulIJgQyIAySkVyRkbAU4xlIvk5GfV23PuX5CqEHaVUpiBGZLZuyqPxQVfRq6l0W7omRGUTTcKp3reuLYto7nx9qHSIrPPRyrdbt3FNx7-46tS4utRVuCYXthNz861jsp7P3qeLeLl6ep5OlnGBnLYxig8JEjlmDAykkGeJoToVQiNmRSpyajkzhU0BIcsznVvNgDFElFbYQuCY3A-9W12pvS9r7U_K6VItJkvV3ygmKKXgR-jYu4Hde_d5MKFVO3fw3eNBMZ5xwBQy2lEwUIV3IXhjf2qBqn5Z9WfZLsOGTOjYZmP8b_P_oS8IpXhE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595137190</pqid></control><display><type>article</type><title>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</title><source>Springer Link</source><creator>Yafaev, D. R.</creator><creatorcontrib>Yafaev, D. R.</creatorcontrib><description>Orthogonal polynomials
are oscillating functions of
as
for
in the absolutely continuous spectrum of the corresponding Jacobi operator
. We show that, irrespective of any specific assumptions on the coefficients of the operator
, the amplitude and phase factors in asymptotic formulas for
are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator
.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1134/S0016266321020064</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Analysis ; Asymptotic properties ; Classical Analysis and ODEs ; Functional Analysis ; Functions (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Polynomials ; Spectral Theory</subject><ispartof>Functional analysis and its applications, 2021-04, Vol.55 (2), p.140-158</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</citedby><cites>FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03438865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yafaev, D. R.</creatorcontrib><title>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>Orthogonal polynomials
are oscillating functions of
as
for
in the absolutely continuous spectrum of the corresponding Jacobi operator
. We show that, irrespective of any specific assumptions on the coefficients of the operator
, the amplitude and phase factors in asymptotic formulas for
are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator
.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Classical Analysis and ODEs</subject><subject>Functional Analysis</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Spectral Theory</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeCTz5Uc3ObNH0cY3PCYKLuOaQ12TraZibdYP_eloo-iE8H7vnO4XIIuQX6AIDJ4xulIJgQyIAySkVyRkbAU4xlIvk5GfV23PuX5CqEHaVUpiBGZLZuyqPxQVfRq6l0W7omRGUTTcKp3reuLYto7nx9qHSIrPPRyrdbt3FNx7-46tS4utRVuCYXthNz861jsp7P3qeLeLl6ep5OlnGBnLYxig8JEjlmDAykkGeJoToVQiNmRSpyajkzhU0BIcsznVvNgDFElFbYQuCY3A-9W12pvS9r7U_K6VItJkvV3ygmKKXgR-jYu4Hde_d5MKFVO3fw3eNBMZ5xwBQy2lEwUIV3IXhjf2qBqn5Z9WfZLsOGTOjYZmP8b_P_oS8IpXhE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yafaev, D. R.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20210401</creationdate><title>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</title><author>Yafaev, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Classical Analysis and ODEs</topic><topic>Functional Analysis</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Spectral Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yafaev, D. R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yafaev, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Relations in Asymptotic Formulas for Orthogonal Polynomials</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>55</volume><issue>2</issue><spage>140</spage><epage>158</epage><pages>140-158</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>Orthogonal polynomials
are oscillating functions of
as
for
in the absolutely continuous spectrum of the corresponding Jacobi operator
. We show that, irrespective of any specific assumptions on the coefficients of the operator
, the amplitude and phase factors in asymptotic formulas for
are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016266321020064</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2663 |
ispartof | Functional analysis and its applications, 2021-04, Vol.55 (2), p.140-158 |
issn | 0016-2663 1573-8485 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03438865v1 |
source | Springer Link |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Analysis Asymptotic properties Classical Analysis and ODEs Functional Analysis Functions (mathematics) Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Polynomials Spectral Theory |
title | Universal Relations in Asymptotic Formulas for Orthogonal Polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Relations%20in%20Asymptotic%20Formulas%20for%20Orthogonal%20Polynomials&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Yafaev,%20D.%20R.&rft.date=2021-04-01&rft.volume=55&rft.issue=2&rft.spage=140&rft.epage=158&rft.pages=140-158&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1134/S0016266321020064&rft_dat=%3Cproquest_hal_p%3E2595137190%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-36d818353921e171b94e0a766a339c76b0f52ecf71319b9abfa21223338f6fc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595137190&rft_id=info:pmid/&rfr_iscdi=true |