Loading…

Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact

This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loadin...

Full description

Saved in:
Bibliographic Details
Published in:Materials Science & Engineering C 2020-12, Vol.117, p.111276-111276, Article 111276
Main Authors: Rahmoun, J., Naceur, H., Morvan, H., Drazetic, P., Fontaine, C., Mazeran, P.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73
cites cdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73
container_end_page 111276
container_issue
container_start_page 111276
container_title Materials Science & Engineering C
container_volume 117
creator Rahmoun, J.
Naceur, H.
Morvan, H.
Drazetic, P.
Fontaine, C.
Mazeran, P.E.
description This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load. •Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.
doi_str_mv 10.1016/j.msec.2020.111276
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03439518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119301870</els_id><sourcerecordid>2450656667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCH-CAInGBQxbbsR1b4lJVpUVaiQucLceesF4ldrCTqiB-PI7S9sCBiy09f_PGMw-hNwTvCSbi42k_ZrB7imkRCKGteIZ2RLZNjYkiz9EOKyprphpyhs5zPmEsZNPSl-isoYoowfAO_bm-nyD5EcJshsoeTTJ2LsJvM_sYKhNcNXqb4gjlLXhboDE6GHz4UcW-mo9QwWDy7G2VIE8xZHjUj8townpCWnK1BAep6iC4tdSPU-nzCr3ozZDh9cN9gb5_vv52dVsfvt58ubo81JYJOtcMZA-CEqsc6VrVtYxJJxXjbUcVJ5QYyiWDvozU9NIqzjthu04QoSxw1zYX6MPmezSDnsq0Jv3S0Xh9e3nQq4Yb1hQneUcK-35jpxR_LpBnPfpsYRhMgLhkTRmjXLWtkgV99w96iksKZZJCcSy4EGJtTjeqbDHnBP3TDwjWa476pNcc9Zqj3nIsRW8frJduBPdU8hhcAT5tAJS93XlIOlsPwYLzCeysXfT_8_8Loriuug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450656667</pqid></control><display><type>article</type><title>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</title><source>ScienceDirect Journals</source><creator>Rahmoun, J. ; Naceur, H. ; Morvan, H. ; Drazetic, P. ; Fontaine, C. ; Mazeran, P.E.</creator><creatorcontrib>Rahmoun, J. ; Naceur, H. ; Morvan, H. ; Drazetic, P. ; Fontaine, C. ; Mazeran, P.E.</creatorcontrib><description>This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load. •Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2020.111276</identifier><identifier>PMID: 32919640</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biomechanical Phenomena ; Bone matrix ; Diaphysis ; Drop tower impact ; Drop towers ; Elastic Modulus ; Engineering Sciences ; Finite Element ; Finite Element Analysis ; Finite element method ; Human humerus bone ; Humans ; Humerus ; Impact loads ; Materials science ; Mathematical models ; Mechanical analysis ; Mechanical loading ; Mechanical properties ; Mechanics ; Micromechanics ; Nanoindentation ; Numerical prediction ; Storage modulus ; Stress, Mechanical</subject><ispartof>Materials Science &amp; Engineering C, 2020-12, Vol.117, p.111276-111276, Article 111276</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2020</rights><rights>Attribution - NonCommercial</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</citedby><cites>FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</cites><orcidid>0000-0001-8826-4518 ; 0000-0003-0555-1680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32919640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uphf.hal.science/hal-03439518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmoun, J.</creatorcontrib><creatorcontrib>Naceur, H.</creatorcontrib><creatorcontrib>Morvan, H.</creatorcontrib><creatorcontrib>Drazetic, P.</creatorcontrib><creatorcontrib>Fontaine, C.</creatorcontrib><creatorcontrib>Mazeran, P.E.</creatorcontrib><title>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load. •Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.</description><subject>Biomechanical Phenomena</subject><subject>Bone matrix</subject><subject>Diaphysis</subject><subject>Drop tower impact</subject><subject>Drop towers</subject><subject>Elastic Modulus</subject><subject>Engineering Sciences</subject><subject>Finite Element</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Human humerus bone</subject><subject>Humans</subject><subject>Humerus</subject><subject>Impact loads</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Micromechanics</subject><subject>Nanoindentation</subject><subject>Numerical prediction</subject><subject>Storage modulus</subject><subject>Stress, Mechanical</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EotvCH-CAInGBQxbbsR1b4lJVpUVaiQucLceesF4ldrCTqiB-PI7S9sCBiy09f_PGMw-hNwTvCSbi42k_ZrB7imkRCKGteIZ2RLZNjYkiz9EOKyprphpyhs5zPmEsZNPSl-isoYoowfAO_bm-nyD5EcJshsoeTTJ2LsJvM_sYKhNcNXqb4gjlLXhboDE6GHz4UcW-mo9QwWDy7G2VIE8xZHjUj8townpCWnK1BAep6iC4tdSPU-nzCr3ozZDh9cN9gb5_vv52dVsfvt58ubo81JYJOtcMZA-CEqsc6VrVtYxJJxXjbUcVJ5QYyiWDvozU9NIqzjthu04QoSxw1zYX6MPmezSDnsq0Jv3S0Xh9e3nQq4Yb1hQneUcK-35jpxR_LpBnPfpsYRhMgLhkTRmjXLWtkgV99w96iksKZZJCcSy4EGJtTjeqbDHnBP3TDwjWa476pNcc9Zqj3nIsRW8frJduBPdU8hhcAT5tAJS93XlIOlsPwYLzCeysXfT_8_8Loriuug</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Rahmoun, J.</creator><creator>Naceur, H.</creator><creator>Morvan, H.</creator><creator>Drazetic, P.</creator><creator>Fontaine, C.</creator><creator>Mazeran, P.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8826-4518</orcidid><orcidid>https://orcid.org/0000-0003-0555-1680</orcidid></search><sort><creationdate>202012</creationdate><title>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</title><author>Rahmoun, J. ; Naceur, H. ; Morvan, H. ; Drazetic, P. ; Fontaine, C. ; Mazeran, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanical Phenomena</topic><topic>Bone matrix</topic><topic>Diaphysis</topic><topic>Drop tower impact</topic><topic>Drop towers</topic><topic>Elastic Modulus</topic><topic>Engineering Sciences</topic><topic>Finite Element</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Human humerus bone</topic><topic>Humans</topic><topic>Humerus</topic><topic>Impact loads</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Micromechanics</topic><topic>Nanoindentation</topic><topic>Numerical prediction</topic><topic>Storage modulus</topic><topic>Stress, Mechanical</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahmoun, J.</creatorcontrib><creatorcontrib>Naceur, H.</creatorcontrib><creatorcontrib>Morvan, H.</creatorcontrib><creatorcontrib>Drazetic, P.</creatorcontrib><creatorcontrib>Fontaine, C.</creatorcontrib><creatorcontrib>Mazeran, P.E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmoun, J.</au><au>Naceur, H.</au><au>Morvan, H.</au><au>Drazetic, P.</au><au>Fontaine, C.</au><au>Mazeran, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-12</date><risdate>2020</risdate><volume>117</volume><spage>111276</spage><epage>111276</epage><pages>111276-111276</pages><artnum>111276</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load. •Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32919640</pmid><doi>10.1016/j.msec.2020.111276</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8826-4518</orcidid><orcidid>https://orcid.org/0000-0003-0555-1680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2020-12, Vol.117, p.111276-111276, Article 111276
issn 0928-4931
1873-0191
language eng
recordid cdi_hal_primary_oai_HAL_hal_03439518v1
source ScienceDirect Journals
subjects Biomechanical Phenomena
Bone matrix
Diaphysis
Drop tower impact
Drop towers
Elastic Modulus
Engineering Sciences
Finite Element
Finite Element Analysis
Finite element method
Human humerus bone
Humans
Humerus
Impact loads
Materials science
Mathematical models
Mechanical analysis
Mechanical loading
Mechanical properties
Mechanics
Micromechanics
Nanoindentation
Numerical prediction
Storage modulus
Stress, Mechanical
title Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20characterization%20and%20micromechanical%20modeling%20of%20the%20elastic%20response%20of%20the%20human%20humerus%20under%20bending%20impact&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Rahmoun,%20J.&rft.date=2020-12&rft.volume=117&rft.spage=111276&rft.epage=111276&rft.pages=111276-111276&rft.artnum=111276&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2020.111276&rft_dat=%3Cproquest_hal_p%3E2450656667%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450656667&rft_id=info:pmid/32919640&rfr_iscdi=true