Loading…
Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact
This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loadin...
Saved in:
Published in: | Materials Science & Engineering C 2020-12, Vol.117, p.111276-111276, Article 111276 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73 |
container_end_page | 111276 |
container_issue | |
container_start_page | 111276 |
container_title | Materials Science & Engineering C |
container_volume | 117 |
creator | Rahmoun, J. Naceur, H. Morvan, H. Drazetic, P. Fontaine, C. Mazeran, P.E. |
description | This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load.
•Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus. |
doi_str_mv | 10.1016/j.msec.2020.111276 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03439518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119301870</els_id><sourcerecordid>2450656667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCH-CAInGBQxbbsR1b4lJVpUVaiQucLceesF4ldrCTqiB-PI7S9sCBiy09f_PGMw-hNwTvCSbi42k_ZrB7imkRCKGteIZ2RLZNjYkiz9EOKyprphpyhs5zPmEsZNPSl-isoYoowfAO_bm-nyD5EcJshsoeTTJ2LsJvM_sYKhNcNXqb4gjlLXhboDE6GHz4UcW-mo9QwWDy7G2VIE8xZHjUj8townpCWnK1BAep6iC4tdSPU-nzCr3ozZDh9cN9gb5_vv52dVsfvt58ubo81JYJOtcMZA-CEqsc6VrVtYxJJxXjbUcVJ5QYyiWDvozU9NIqzjthu04QoSxw1zYX6MPmezSDnsq0Jv3S0Xh9e3nQq4Yb1hQneUcK-35jpxR_LpBnPfpsYRhMgLhkTRmjXLWtkgV99w96iksKZZJCcSy4EGJtTjeqbDHnBP3TDwjWa476pNcc9Zqj3nIsRW8frJduBPdU8hhcAT5tAJS93XlIOlsPwYLzCeysXfT_8_8Loriuug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450656667</pqid></control><display><type>article</type><title>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</title><source>ScienceDirect Journals</source><creator>Rahmoun, J. ; Naceur, H. ; Morvan, H. ; Drazetic, P. ; Fontaine, C. ; Mazeran, P.E.</creator><creatorcontrib>Rahmoun, J. ; Naceur, H. ; Morvan, H. ; Drazetic, P. ; Fontaine, C. ; Mazeran, P.E.</creatorcontrib><description>This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load.
•Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2020.111276</identifier><identifier>PMID: 32919640</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biomechanical Phenomena ; Bone matrix ; Diaphysis ; Drop tower impact ; Drop towers ; Elastic Modulus ; Engineering Sciences ; Finite Element ; Finite Element Analysis ; Finite element method ; Human humerus bone ; Humans ; Humerus ; Impact loads ; Materials science ; Mathematical models ; Mechanical analysis ; Mechanical loading ; Mechanical properties ; Mechanics ; Micromechanics ; Nanoindentation ; Numerical prediction ; Storage modulus ; Stress, Mechanical</subject><ispartof>Materials Science & Engineering C, 2020-12, Vol.117, p.111276-111276, Article 111276</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2020</rights><rights>Attribution - NonCommercial</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</citedby><cites>FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</cites><orcidid>0000-0001-8826-4518 ; 0000-0003-0555-1680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32919640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uphf.hal.science/hal-03439518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmoun, J.</creatorcontrib><creatorcontrib>Naceur, H.</creatorcontrib><creatorcontrib>Morvan, H.</creatorcontrib><creatorcontrib>Drazetic, P.</creatorcontrib><creatorcontrib>Fontaine, C.</creatorcontrib><creatorcontrib>Mazeran, P.E.</creatorcontrib><title>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load.
•Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.</description><subject>Biomechanical Phenomena</subject><subject>Bone matrix</subject><subject>Diaphysis</subject><subject>Drop tower impact</subject><subject>Drop towers</subject><subject>Elastic Modulus</subject><subject>Engineering Sciences</subject><subject>Finite Element</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Human humerus bone</subject><subject>Humans</subject><subject>Humerus</subject><subject>Impact loads</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Micromechanics</subject><subject>Nanoindentation</subject><subject>Numerical prediction</subject><subject>Storage modulus</subject><subject>Stress, Mechanical</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EotvCH-CAInGBQxbbsR1b4lJVpUVaiQucLceesF4ldrCTqiB-PI7S9sCBiy09f_PGMw-hNwTvCSbi42k_ZrB7imkRCKGteIZ2RLZNjYkiz9EOKyprphpyhs5zPmEsZNPSl-isoYoowfAO_bm-nyD5EcJshsoeTTJ2LsJvM_sYKhNcNXqb4gjlLXhboDE6GHz4UcW-mo9QwWDy7G2VIE8xZHjUj8townpCWnK1BAep6iC4tdSPU-nzCr3ozZDh9cN9gb5_vv52dVsfvt58ubo81JYJOtcMZA-CEqsc6VrVtYxJJxXjbUcVJ5QYyiWDvozU9NIqzjthu04QoSxw1zYX6MPmezSDnsq0Jv3S0Xh9e3nQq4Yb1hQneUcK-35jpxR_LpBnPfpsYRhMgLhkTRmjXLWtkgV99w96iksKZZJCcSy4EGJtTjeqbDHnBP3TDwjWa476pNcc9Zqj3nIsRW8frJduBPdU8hhcAT5tAJS93XlIOlsPwYLzCeysXfT_8_8Loriuug</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Rahmoun, J.</creator><creator>Naceur, H.</creator><creator>Morvan, H.</creator><creator>Drazetic, P.</creator><creator>Fontaine, C.</creator><creator>Mazeran, P.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8826-4518</orcidid><orcidid>https://orcid.org/0000-0003-0555-1680</orcidid></search><sort><creationdate>202012</creationdate><title>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</title><author>Rahmoun, J. ; Naceur, H. ; Morvan, H. ; Drazetic, P. ; Fontaine, C. ; Mazeran, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanical Phenomena</topic><topic>Bone matrix</topic><topic>Diaphysis</topic><topic>Drop tower impact</topic><topic>Drop towers</topic><topic>Elastic Modulus</topic><topic>Engineering Sciences</topic><topic>Finite Element</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Human humerus bone</topic><topic>Humans</topic><topic>Humerus</topic><topic>Impact loads</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Micromechanics</topic><topic>Nanoindentation</topic><topic>Numerical prediction</topic><topic>Storage modulus</topic><topic>Stress, Mechanical</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahmoun, J.</creatorcontrib><creatorcontrib>Naceur, H.</creatorcontrib><creatorcontrib>Morvan, H.</creatorcontrib><creatorcontrib>Drazetic, P.</creatorcontrib><creatorcontrib>Fontaine, C.</creatorcontrib><creatorcontrib>Mazeran, P.E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmoun, J.</au><au>Naceur, H.</au><au>Morvan, H.</au><au>Drazetic, P.</au><au>Fontaine, C.</au><au>Mazeran, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-12</date><risdate>2020</risdate><volume>117</volume><spage>111276</spage><epage>111276</epage><pages>111276-111276</pages><artnum>111276</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load.
•Experimental Characterization of the human humerus bone mechanical behaviour under static and dynamic bending loading.•We perform a micromechanical characterization of the humeral bone elastic modulus by nanoindentation tests.•Theoretical formulation of a micromechanics based elastic model for humeral bone.•Multi-scale Finite Element model of a human humerus bone under impact.•The model predicts adequately the experimental results via the estimation of the ultimate impact load of the human humerus.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32919640</pmid><doi>10.1016/j.msec.2020.111276</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8826-4518</orcidid><orcidid>https://orcid.org/0000-0003-0555-1680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2020-12, Vol.117, p.111276-111276, Article 111276 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03439518v1 |
source | ScienceDirect Journals |
subjects | Biomechanical Phenomena Bone matrix Diaphysis Drop tower impact Drop towers Elastic Modulus Engineering Sciences Finite Element Finite Element Analysis Finite element method Human humerus bone Humans Humerus Impact loads Materials science Mathematical models Mechanical analysis Mechanical loading Mechanical properties Mechanics Micromechanics Nanoindentation Numerical prediction Storage modulus Stress, Mechanical |
title | Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20characterization%20and%20micromechanical%20modeling%20of%20the%20elastic%20response%20of%20the%20human%20humerus%20under%20bending%20impact&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Rahmoun,%20J.&rft.date=2020-12&rft.volume=117&rft.spage=111276&rft.epage=111276&rft.pages=111276-111276&rft.artnum=111276&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2020.111276&rft_dat=%3Cproquest_hal_p%3E2450656667%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-4e8fe621c9d1b79b7448d89457b295121a2584ef1963f8c955b6cbb6169ce5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450656667&rft_id=info:pmid/32919640&rfr_iscdi=true |