Loading…

Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear-compression loading

•Yield behaviour of Al5056 aluminium alloy honeycombs is investigated under mixed shear-compression.•Numerical simulations allow to overcome a limitation of the experimental measurements.•Numerical and experimental investigations allow to investigate the normal and shear behaviours separately.•A mac...

Full description

Saved in:
Bibliographic Details
Published in:International journal of impact engineering 2017-10, Vol.108, p.348-360
Main Authors: Tounsi, R., Markiewicz, E., Zouari, B., Chaari, F., Haugou, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513
cites cdi_FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513
container_end_page 360
container_issue
container_start_page 348
container_title International journal of impact engineering
container_volume 108
creator Tounsi, R.
Markiewicz, E.
Zouari, B.
Chaari, F.
Haugou, G.
description •Yield behaviour of Al5056 aluminium alloy honeycombs is investigated under mixed shear-compression.•Numerical simulations allow to overcome a limitation of the experimental measurements.•Numerical and experimental investigations allow to investigate the normal and shear behaviours separately.•A macroscopic yield criterion expressed as a function of the impact velocity, the loading angle Ψ and the in-plane orientation angle β. Numerical simulations of honeycomb behaviour under mixed shear-compression loading are performed to overcome a limitation of the experimental measurements and to investigate the normal and the shear honeycomb behaviours separately. A detailed FE model allowing to simulate the mixed shear-compression honeycomb behaviour is presented. A validation between numerical and experimental results in terms of crushing responses and collapse mechanisms allows to dissociate the normal and shear forces components. They are used to identify the parameters of a macroscopic yield criterion expressed as a function of the impact velocity, the loading angle and the in-plane orientation angle. A well known dynamic enhancement phenomenon is confirmed by this macroscopic yield criterion. However, as a new result, this dynamic enhancement is reversed when the loading angle reaches a critical value. An analysis of the collapse mechanisms is carried out under both quasi-static and dynamic loading conditions in order to explain this inversion.
doi_str_mv 10.1016/j.ijimpeng.2017.05.001
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03456400v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X16311010</els_id><sourcerecordid>1961423132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYsoOK5-BQn4JNh606R_8uawuO7CoC8u7FtIk9uZlDapSWfY-Qx-6U0d3VefAvf8ziH3nix7T6GgQOvPQ2EHO83o9kUJtCmgKgDoi2xD20bkrALxMttAw3jecPbwOnsT45CABirYZL-_HycMVquRWHfCuNi9Wqx3nwg-zkmY0C1JO6nRmj8CUc6QSengo_az1eRscTREB7skPOm-J9uxgqomB-_wrP3URXJ0BgOZ7CMaEg-oQp7mc8AYV8volbFu_zZ71asx4ru_71V2f_P15_Vtvvvx7e56u8s1a_iSMyVq0deNorQVddtq3nVKNJSxru5oB6yHsjUCkRqjqkQLypUSHHhbirai7Cr7eMk9qFHOaUcVztIrK2-3O7nOgPGq5gCnlf1wYefgfx3TfeTgj8Gl70kqaspLRlmZqPpCrWeJAfvnWApyLUkO8l9Jci1JQiVTB8n45WLEtO_JYpBRW3QajQ2oF2m8_V_EExK-n90</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961423132</pqid></control><display><type>article</type><title>Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear-compression loading</title><source>Elsevier</source><creator>Tounsi, R. ; Markiewicz, E. ; Zouari, B. ; Chaari, F. ; Haugou, G.</creator><creatorcontrib>Tounsi, R. ; Markiewicz, E. ; Zouari, B. ; Chaari, F. ; Haugou, G.</creatorcontrib><description>•Yield behaviour of Al5056 aluminium alloy honeycombs is investigated under mixed shear-compression.•Numerical simulations allow to overcome a limitation of the experimental measurements.•Numerical and experimental investigations allow to investigate the normal and shear behaviours separately.•A macroscopic yield criterion expressed as a function of the impact velocity, the loading angle Ψ and the in-plane orientation angle β. Numerical simulations of honeycomb behaviour under mixed shear-compression loading are performed to overcome a limitation of the experimental measurements and to investigate the normal and the shear honeycomb behaviours separately. A detailed FE model allowing to simulate the mixed shear-compression honeycomb behaviour is presented. A validation between numerical and experimental results in terms of crushing responses and collapse mechanisms allows to dissociate the normal and shear forces components. They are used to identify the parameters of a macroscopic yield criterion expressed as a function of the impact velocity, the loading angle and the in-plane orientation angle. A well known dynamic enhancement phenomenon is confirmed by this macroscopic yield criterion. However, as a new result, this dynamic enhancement is reversed when the loading angle reaches a critical value. An analysis of the collapse mechanisms is carried out under both quasi-static and dynamic loading conditions in order to explain this inversion.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2017.05.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum alloys ; Collapse ; Compression loads ; Computer simulation ; Engineering Sciences ; Experimental validation ; FE model ; Finite element analysis ; Honeycomb ; Honeycomb construction ; Impact velocity ; Macroscopic yield criterion ; Mathematical models ; Mechanics ; Mixed shear-compression ; Numerical analysis ; Parameter identification ; Shear ; Shear strength ; Studies ; Yield criteria</subject><ispartof>International journal of impact engineering, 2017-10, Vol.108, p.348-360</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Oct 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513</citedby><cites>FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513</cites><orcidid>0000-0003-3571-6458 ; 0000-0002-5013-4838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://uphf.hal.science/hal-03456400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tounsi, R.</creatorcontrib><creatorcontrib>Markiewicz, E.</creatorcontrib><creatorcontrib>Zouari, B.</creatorcontrib><creatorcontrib>Chaari, F.</creatorcontrib><creatorcontrib>Haugou, G.</creatorcontrib><title>Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear-compression loading</title><title>International journal of impact engineering</title><description>•Yield behaviour of Al5056 aluminium alloy honeycombs is investigated under mixed shear-compression.•Numerical simulations allow to overcome a limitation of the experimental measurements.•Numerical and experimental investigations allow to investigate the normal and shear behaviours separately.•A macroscopic yield criterion expressed as a function of the impact velocity, the loading angle Ψ and the in-plane orientation angle β. Numerical simulations of honeycomb behaviour under mixed shear-compression loading are performed to overcome a limitation of the experimental measurements and to investigate the normal and the shear honeycomb behaviours separately. A detailed FE model allowing to simulate the mixed shear-compression honeycomb behaviour is presented. A validation between numerical and experimental results in terms of crushing responses and collapse mechanisms allows to dissociate the normal and shear forces components. They are used to identify the parameters of a macroscopic yield criterion expressed as a function of the impact velocity, the loading angle and the in-plane orientation angle. A well known dynamic enhancement phenomenon is confirmed by this macroscopic yield criterion. However, as a new result, this dynamic enhancement is reversed when the loading angle reaches a critical value. An analysis of the collapse mechanisms is carried out under both quasi-static and dynamic loading conditions in order to explain this inversion.</description><subject>Aluminum alloys</subject><subject>Collapse</subject><subject>Compression loads</subject><subject>Computer simulation</subject><subject>Engineering Sciences</subject><subject>Experimental validation</subject><subject>FE model</subject><subject>Finite element analysis</subject><subject>Honeycomb</subject><subject>Honeycomb construction</subject><subject>Impact velocity</subject><subject>Macroscopic yield criterion</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mixed shear-compression</subject><subject>Numerical analysis</subject><subject>Parameter identification</subject><subject>Shear</subject><subject>Shear strength</subject><subject>Studies</subject><subject>Yield criteria</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYsoOK5-BQn4JNh606R_8uawuO7CoC8u7FtIk9uZlDapSWfY-Qx-6U0d3VefAvf8ziH3nix7T6GgQOvPQ2EHO83o9kUJtCmgKgDoi2xD20bkrALxMttAw3jecPbwOnsT45CABirYZL-_HycMVquRWHfCuNi9Wqx3nwg-zkmY0C1JO6nRmj8CUc6QSengo_az1eRscTREB7skPOm-J9uxgqomB-_wrP3URXJ0BgOZ7CMaEg-oQp7mc8AYV8volbFu_zZ71asx4ru_71V2f_P15_Vtvvvx7e56u8s1a_iSMyVq0deNorQVddtq3nVKNJSxru5oB6yHsjUCkRqjqkQLypUSHHhbirai7Cr7eMk9qFHOaUcVztIrK2-3O7nOgPGq5gCnlf1wYefgfx3TfeTgj8Gl70kqaspLRlmZqPpCrWeJAfvnWApyLUkO8l9Jci1JQiVTB8n45WLEtO_JYpBRW3QajQ2oF2m8_V_EExK-n90</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Tounsi, R.</creator><creator>Markiewicz, E.</creator><creator>Zouari, B.</creator><creator>Chaari, F.</creator><creator>Haugou, G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3571-6458</orcidid><orcidid>https://orcid.org/0000-0002-5013-4838</orcidid></search><sort><creationdate>201710</creationdate><title>Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear-compression loading</title><author>Tounsi, R. ; Markiewicz, E. ; Zouari, B. ; Chaari, F. ; Haugou, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum alloys</topic><topic>Collapse</topic><topic>Compression loads</topic><topic>Computer simulation</topic><topic>Engineering Sciences</topic><topic>Experimental validation</topic><topic>FE model</topic><topic>Finite element analysis</topic><topic>Honeycomb</topic><topic>Honeycomb construction</topic><topic>Impact velocity</topic><topic>Macroscopic yield criterion</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mixed shear-compression</topic><topic>Numerical analysis</topic><topic>Parameter identification</topic><topic>Shear</topic><topic>Shear strength</topic><topic>Studies</topic><topic>Yield criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tounsi, R.</creatorcontrib><creatorcontrib>Markiewicz, E.</creatorcontrib><creatorcontrib>Zouari, B.</creatorcontrib><creatorcontrib>Chaari, F.</creatorcontrib><creatorcontrib>Haugou, G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tounsi, R.</au><au>Markiewicz, E.</au><au>Zouari, B.</au><au>Chaari, F.</au><au>Haugou, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear-compression loading</atitle><jtitle>International journal of impact engineering</jtitle><date>2017-10</date><risdate>2017</risdate><volume>108</volume><spage>348</spage><epage>360</epage><pages>348-360</pages><issn>0734-743X</issn><eissn>1879-3509</eissn><abstract>•Yield behaviour of Al5056 aluminium alloy honeycombs is investigated under mixed shear-compression.•Numerical simulations allow to overcome a limitation of the experimental measurements.•Numerical and experimental investigations allow to investigate the normal and shear behaviours separately.•A macroscopic yield criterion expressed as a function of the impact velocity, the loading angle Ψ and the in-plane orientation angle β. Numerical simulations of honeycomb behaviour under mixed shear-compression loading are performed to overcome a limitation of the experimental measurements and to investigate the normal and the shear honeycomb behaviours separately. A detailed FE model allowing to simulate the mixed shear-compression honeycomb behaviour is presented. A validation between numerical and experimental results in terms of crushing responses and collapse mechanisms allows to dissociate the normal and shear forces components. They are used to identify the parameters of a macroscopic yield criterion expressed as a function of the impact velocity, the loading angle and the in-plane orientation angle. A well known dynamic enhancement phenomenon is confirmed by this macroscopic yield criterion. However, as a new result, this dynamic enhancement is reversed when the loading angle reaches a critical value. An analysis of the collapse mechanisms is carried out under both quasi-static and dynamic loading conditions in order to explain this inversion.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2017.05.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3571-6458</orcidid><orcidid>https://orcid.org/0000-0002-5013-4838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2017-10, Vol.108, p.348-360
issn 0734-743X
1879-3509
language eng
recordid cdi_hal_primary_oai_HAL_hal_03456400v1
source Elsevier
subjects Aluminum alloys
Collapse
Compression loads
Computer simulation
Engineering Sciences
Experimental validation
FE model
Finite element analysis
Honeycomb
Honeycomb construction
Impact velocity
Macroscopic yield criterion
Mathematical models
Mechanics
Mixed shear-compression
Numerical analysis
Parameter identification
Shear
Shear strength
Studies
Yield criteria
title Numerical investigation, experimental validation and macroscopic yield criterion of Al5056 honeycombs under mixed shear-compression loading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation,%20experimental%20validation%20and%20macroscopic%20yield%20criterion%20of%20Al5056%20honeycombs%20under%20mixed%20shear-compression%20loading&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Tounsi,%20R.&rft.date=2017-10&rft.volume=108&rft.spage=348&rft.epage=360&rft.pages=348-360&rft.issn=0734-743X&rft.eissn=1879-3509&rft_id=info:doi/10.1016/j.ijimpeng.2017.05.001&rft_dat=%3Cproquest_hal_p%3E1961423132%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-3a969f67a1189688c4bba97133b6b1b03f028d9ee1dda53a9914aa94048298513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1961423132&rft_id=info:pmid/&rfr_iscdi=true