Loading…

Resolving the Hot Dust Disk of ESO323-G77

Infrared interferometry has led to a paradigm shift in our understanding of the dusty structure in the central parsecs of active galactic nuclei (AGNs). The dust is now thought to comprise a hot (∼1000 K) equatorial disk, some of which is blown into a cooler (∼300 K) polar dusty wind by radiation pr...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-05, Vol.912 (2), p.96
Main Authors: Leftley, James H., Tristram, Konrad R. W., Hönig, Sebastian F., Asmus, Daniel, Kishimoto, Makoto, Gandhi, Poshak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Infrared interferometry has led to a paradigm shift in our understanding of the dusty structure in the central parsecs of active galactic nuclei (AGNs). The dust is now thought to comprise a hot (∼1000 K) equatorial disk, some of which is blown into a cooler (∼300 K) polar dusty wind by radiation pressure. In this paper, we utilize the new near-IR interferometer GRAVITY on the Very Large Telescope Interferometer (VLTI) to study a Type 1.2 AGNs hosted in the nearby Seyfert galaxy ESO 323-G77. By modeling the squared visibility and closure phase, we find that the hot dust is equatorially extended, consistent with the idea of a disk, and shows signs of asymmetry in the same direction. Furthermore, the data is fully consistent with the hot dust size determined by K -band reverberation mapping as well as the predicted size from a CAT3D-WIND model created in previous work using the spectral energy distribution of ESO 323-G77 and observations in the mid-IR from VLTI/MID-infrared Interferometric instrument).
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/abee80