Loading…
Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations
•Fire behavior of three carbon reinforced composites samples is evaluated for two significant scales.•The FAA standard NexGen burner is used to evaluated the fire resistance at large scale.•Experimental mass loss demonstrate the superior thermal stability of carbon-PEKK.•No open plies are observed a...
Saved in:
Published in: | Applied thermal engineering 2019-08, Vol.159, p.113834, Article 113834 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553 |
container_end_page | |
container_issue | |
container_start_page | 113834 |
container_title | Applied thermal engineering |
container_volume | 159 |
creator | Grange, N. Manescau, B. Chetehouna, K. Gascoin, N. Lamoot, L. Coppalle, A. Senave, S. Reynaud, I. |
description | •Fire behavior of three carbon reinforced composites samples is evaluated for two significant scales.•The FAA standard NexGen burner is used to evaluated the fire resistance at large scale.•Experimental mass loss demonstrate the superior thermal stability of carbon-PEKK.•No open plies are observed after fire exposure of carbon-BMI samples.
In industrial and transportation system, composite materials are now commonly used. However, despite their superior mechanical properties and weight reduction capacity, such materials are highly vulnerable to fire. To access such risks in the aeronautical industry, standard tests are performed at different scales on representative selected samples. In this work, the fire behavior of three different carbon-reinforced composites (carbon-phenolic, carbon-PEKK and carbon-BMI) is evaluated at medium and large-scale using state of the art techniques, such as Cone calorimeter and NexGen burner. To provide a detailed description of the fire behavior of these three materials, mass loss as well as the backward face temperature are provided and compared for the different scales. The results highlight better thermal stability of the carbon-PEKK and the carbon-BMI in comparison with the carbon-phenolic; moreover the evolution of the phenomena between different scales is observed. |
doi_str_mv | 10.1016/j.applthermaleng.2019.113834 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03485882v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118373617</els_id><sourcerecordid>2267704722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxU1oIWnS7yBoLz14I8n640AvIWSTwEIvzVmMpXFWW6_kStqFfvtocQnkltNoxHs_jeY1zXdGV4wydb1bwTxPZYtpDxOGlxWn7GbFWNd34qy5YL3uWqmo-lTPnbxpRcfYefMl5x2ljPdaXDR_1j4hSZh9LhAskjgSC2mIoR0goyM27ueYfUGyh4LJw5TJIThMZIhlS7xDmAgEVxkwVYi3JMQ6T_FHrOYw-pdDql0M-ar5PFY7fv1fL5vn9f3vu8d28-vh6e5201pJRWlxlJxL1TsBg3USlO56C0Jz1IJbGPigkFpBFYClqARoBVpaO4oBqZOyu2x-LNwtTGZOfg_pn4ngzePtxpzuaCd62ff8yKr226KdU_x7wFzMLh5SqOMZzpXWtL7Lq-rnorIp5pxwfMMyak5RmJ15H4U5RWGWKKp9vdix_vroMZlsPdZtu7p8W4yL_mOgV1pnnN0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267704722</pqid></control><display><type>article</type><title>Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations</title><source>Elsevier</source><creator>Grange, N. ; Manescau, B. ; Chetehouna, K. ; Gascoin, N. ; Lamoot, L. ; Coppalle, A. ; Senave, S. ; Reynaud, I.</creator><creatorcontrib>Grange, N. ; Manescau, B. ; Chetehouna, K. ; Gascoin, N. ; Lamoot, L. ; Coppalle, A. ; Senave, S. ; Reynaud, I.</creatorcontrib><description>•Fire behavior of three carbon reinforced composites samples is evaluated for two significant scales.•The FAA standard NexGen burner is used to evaluated the fire resistance at large scale.•Experimental mass loss demonstrate the superior thermal stability of carbon-PEKK.•No open plies are observed after fire exposure of carbon-BMI samples.
In industrial and transportation system, composite materials are now commonly used. However, despite their superior mechanical properties and weight reduction capacity, such materials are highly vulnerable to fire. To access such risks in the aeronautical industry, standard tests are performed at different scales on representative selected samples. In this work, the fire behavior of three different carbon-reinforced composites (carbon-phenolic, carbon-PEKK and carbon-BMI) is evaluated at medium and large-scale using state of the art techniques, such as Cone calorimeter and NexGen burner. To provide a detailed description of the fire behavior of these three materials, mass loss as well as the backward face temperature are provided and compared for the different scales. The results highlight better thermal stability of the carbon-PEKK and the carbon-BMI in comparison with the carbon-phenolic; moreover the evolution of the phenomena between different scales is observed.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.113834</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aeronautics ; Carbon ; Carbon fiber reinforced plastics ; Composite materials ; Cone calorimeter ; Cone calorimeters ; Engineering Sciences ; Fire prevention ; Fire resistance ; Fire resistant materials ; Fires ; Infrared visualization ; Mechanical properties ; Multiscale analysis ; Nanotubes ; NexGen burner ; Polymer matrix composites ; Thermal stability ; Transportation systems ; Weight reduction</subject><ispartof>Applied thermal engineering, 2019-08, Vol.159, p.113834, Article 113834</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553</citedby><cites>FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553</cites><orcidid>0000-0002-3970-9442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03485882$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grange, N.</creatorcontrib><creatorcontrib>Manescau, B.</creatorcontrib><creatorcontrib>Chetehouna, K.</creatorcontrib><creatorcontrib>Gascoin, N.</creatorcontrib><creatorcontrib>Lamoot, L.</creatorcontrib><creatorcontrib>Coppalle, A.</creatorcontrib><creatorcontrib>Senave, S.</creatorcontrib><creatorcontrib>Reynaud, I.</creatorcontrib><title>Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations</title><title>Applied thermal engineering</title><description>•Fire behavior of three carbon reinforced composites samples is evaluated for two significant scales.•The FAA standard NexGen burner is used to evaluated the fire resistance at large scale.•Experimental mass loss demonstrate the superior thermal stability of carbon-PEKK.•No open plies are observed after fire exposure of carbon-BMI samples.
In industrial and transportation system, composite materials are now commonly used. However, despite their superior mechanical properties and weight reduction capacity, such materials are highly vulnerable to fire. To access such risks in the aeronautical industry, standard tests are performed at different scales on representative selected samples. In this work, the fire behavior of three different carbon-reinforced composites (carbon-phenolic, carbon-PEKK and carbon-BMI) is evaluated at medium and large-scale using state of the art techniques, such as Cone calorimeter and NexGen burner. To provide a detailed description of the fire behavior of these three materials, mass loss as well as the backward face temperature are provided and compared for the different scales. The results highlight better thermal stability of the carbon-PEKK and the carbon-BMI in comparison with the carbon-phenolic; moreover the evolution of the phenomena between different scales is observed.</description><subject>Aeronautics</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Composite materials</subject><subject>Cone calorimeter</subject><subject>Cone calorimeters</subject><subject>Engineering Sciences</subject><subject>Fire prevention</subject><subject>Fire resistance</subject><subject>Fire resistant materials</subject><subject>Fires</subject><subject>Infrared visualization</subject><subject>Mechanical properties</subject><subject>Multiscale analysis</subject><subject>Nanotubes</subject><subject>NexGen burner</subject><subject>Polymer matrix composites</subject><subject>Thermal stability</subject><subject>Transportation systems</subject><subject>Weight reduction</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxU1oIWnS7yBoLz14I8n640AvIWSTwEIvzVmMpXFWW6_kStqFfvtocQnkltNoxHs_jeY1zXdGV4wydb1bwTxPZYtpDxOGlxWn7GbFWNd34qy5YL3uWqmo-lTPnbxpRcfYefMl5x2ljPdaXDR_1j4hSZh9LhAskjgSC2mIoR0goyM27ueYfUGyh4LJw5TJIThMZIhlS7xDmAgEVxkwVYi3JMQ6T_FHrOYw-pdDql0M-ar5PFY7fv1fL5vn9f3vu8d28-vh6e5201pJRWlxlJxL1TsBg3USlO56C0Jz1IJbGPigkFpBFYClqARoBVpaO4oBqZOyu2x-LNwtTGZOfg_pn4ngzePtxpzuaCd62ff8yKr226KdU_x7wFzMLh5SqOMZzpXWtL7Lq-rnorIp5pxwfMMyak5RmJ15H4U5RWGWKKp9vdix_vroMZlsPdZtu7p8W4yL_mOgV1pnnN0</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Grange, N.</creator><creator>Manescau, B.</creator><creator>Chetehouna, K.</creator><creator>Gascoin, N.</creator><creator>Lamoot, L.</creator><creator>Coppalle, A.</creator><creator>Senave, S.</creator><creator>Reynaud, I.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3970-9442</orcidid></search><sort><creationdate>20190801</creationdate><title>Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations</title><author>Grange, N. ; Manescau, B. ; Chetehouna, K. ; Gascoin, N. ; Lamoot, L. ; Coppalle, A. ; Senave, S. ; Reynaud, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aeronautics</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Composite materials</topic><topic>Cone calorimeter</topic><topic>Cone calorimeters</topic><topic>Engineering Sciences</topic><topic>Fire prevention</topic><topic>Fire resistance</topic><topic>Fire resistant materials</topic><topic>Fires</topic><topic>Infrared visualization</topic><topic>Mechanical properties</topic><topic>Multiscale analysis</topic><topic>Nanotubes</topic><topic>NexGen burner</topic><topic>Polymer matrix composites</topic><topic>Thermal stability</topic><topic>Transportation systems</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grange, N.</creatorcontrib><creatorcontrib>Manescau, B.</creatorcontrib><creatorcontrib>Chetehouna, K.</creatorcontrib><creatorcontrib>Gascoin, N.</creatorcontrib><creatorcontrib>Lamoot, L.</creatorcontrib><creatorcontrib>Coppalle, A.</creatorcontrib><creatorcontrib>Senave, S.</creatorcontrib><creatorcontrib>Reynaud, I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grange, N.</au><au>Manescau, B.</au><au>Chetehouna, K.</au><au>Gascoin, N.</au><au>Lamoot, L.</au><au>Coppalle, A.</au><au>Senave, S.</au><au>Reynaud, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>159</volume><spage>113834</spage><pages>113834-</pages><artnum>113834</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Fire behavior of three carbon reinforced composites samples is evaluated for two significant scales.•The FAA standard NexGen burner is used to evaluated the fire resistance at large scale.•Experimental mass loss demonstrate the superior thermal stability of carbon-PEKK.•No open plies are observed after fire exposure of carbon-BMI samples.
In industrial and transportation system, composite materials are now commonly used. However, despite their superior mechanical properties and weight reduction capacity, such materials are highly vulnerable to fire. To access such risks in the aeronautical industry, standard tests are performed at different scales on representative selected samples. In this work, the fire behavior of three different carbon-reinforced composites (carbon-phenolic, carbon-PEKK and carbon-BMI) is evaluated at medium and large-scale using state of the art techniques, such as Cone calorimeter and NexGen burner. To provide a detailed description of the fire behavior of these three materials, mass loss as well as the backward face temperature are provided and compared for the different scales. The results highlight better thermal stability of the carbon-PEKK and the carbon-BMI in comparison with the carbon-phenolic; moreover the evolution of the phenomena between different scales is observed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.113834</doi><orcidid>https://orcid.org/0000-0002-3970-9442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2019-08, Vol.159, p.113834, Article 113834 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03485882v1 |
source | Elsevier |
subjects | Aeronautics Carbon Carbon fiber reinforced plastics Composite materials Cone calorimeter Cone calorimeters Engineering Sciences Fire prevention Fire resistance Fire resistant materials Fires Infrared visualization Mechanical properties Multiscale analysis Nanotubes NexGen burner Polymer matrix composites Thermal stability Transportation systems Weight reduction |
title | Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fire%20resistance%20of%20carbon-based%20composite%20materials%20under%20both%20ideal%20and%20realistic%20normative%20configurations&rft.jtitle=Applied%20thermal%20engineering&rft.au=Grange,%20N.&rft.date=2019-08-01&rft.volume=159&rft.spage=113834&rft.pages=113834-&rft.artnum=113834&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.113834&rft_dat=%3Cproquest_hal_p%3E2267704722%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-ef522568d4abcd5a6738ca472e742cab2b6e0c406aac0e64a76a75ccf4be0d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267704722&rft_id=info:pmid/&rfr_iscdi=true |