Loading…
Laser-induced breakdown spectroscopy of uranium in the vacuum ultraviolet range
Quantitative analysis of impurities in nuclear materials is necessary in a number of areas, including process control during manufacturing, quality control of products, or for nuclear forensics purposes. Due to the important handling constraints induced by the samples radioactivity and their contain...
Saved in:
Published in: | Spectrochimica acta. Part B: Atomic spectroscopy 2020-04, Vol.166, p.105796, Article 105796 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative analysis of impurities in nuclear materials is necessary in a number of areas, including process control during manufacturing, quality control of products, or for nuclear forensics purposes. Due to the important handling constraints induced by the samples radioactivity and their containment inside airtight enclosures, optical analytical techniques have great advantages over standard ones that require sample preparation, like ICP-based techniques. Therefore, laser-induced breakdown spectroscopy (LIBS) is developed for fast quantitative analysis of impurities in uranium. Actinides are well-known to have a very large number of emission lines in the UV–visible spectral range, hence making the detection of trace or minor elements a real challenge. Therefore, in this study we explored the vacuum ultraviolet range (VUV), i.e. below 200 nm, in order to investigate if this spectral region is more favorable for elemental analysis of uranium by LIBS. As practically no data on VUV spectroscopy of uranium are available, we first analyzed the spectra obtained to assess the spectral density of uranium lines, both in the UV and VUV. Then, the detection limits of two elements, carbon and vanadium, were estimated. It was found that, in spite of a less dense and less intense uranium background in the VUV, this spectral region is not relevant for metal impurities whose spectra are marginally analytically useful in the VUV. Conversely, for non-metals having intense lines in the VUV, the detection limit can be significantly better than in the UV. This was already known for non-nuclear samples. This study extends that conclusion to nuclear materials and has important practical consequences on the implementation of a LIBS analyzer in a nuclear facility.
[Display omitted]
•Comparison of the VUV and UV ranges for impurities detection in uranium by LIBS.•The background level and spectral interferences are discussed in both cases.•Detection limits of C and V are estimated in UV and VUV.•VUV significantly improves the detection limit of non-metals such as carbon.•VUV is not relevant for detection of metal impurities such as vanadium. |
---|---|
ISSN: | 0584-8547 1873-3565 |
DOI: | 10.1016/j.sab.2020.105796 |