Loading…

Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy

A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different p...

Full description

Saved in:
Bibliographic Details
Published in:Progress in nuclear magnetic resonance spectroscopy 2018-12, Vol.109, p.101-134
Main Author: Dumez, Jean-Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453
cites cdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453
container_end_page 134
container_issue
container_start_page 101
container_title Progress in nuclear magnetic resonance spectroscopy
container_volume 109
creator Dumez, Jean-Nicolas
description A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.
doi_str_mv 10.1016/j.pnmrs.2018.08.001
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03494578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155149021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMobk7_AkH6qA-dl1zTtI9jqBOmwtTnkKXp2tE2tWmF_fe22xx8cHD3--64j5BbClMKNHzcTuuqbNyUAY2m0AvoGRnTSKCPCPScjAFE7Ic85CNy5dwWAHjIxCUZIXAmKOKYrD5r1eaq8EylbZJXG09VieeOTWcKo9vcVl5p2swmzssrL8s3md8YZ4tuP3p_W_WGnmus07beXZOLVBXO3BzrhHw_P33NF_7y4-V1Plv6GqOg9WkSizjVJjUppDECM5xHinKNYcqMDqJkLSIWUYFxzIUGFvB1P-UYYJJgwHFCHg57M1XIuslL1eykVblczJZy6AEGccBF9Et79v7A1o396YxrZZk7bYpCVcZ2TjLKOQ1iYAOKB1T3_7jGpKfdFOQQvNzKffByCF5CLxhcd8cD3bo0ycnznzT-AYLvf54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155149021</pqid></control><display><type>article</type><title>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</title><source>Elsevier</source><creator>Dumez, Jean-Nicolas</creator><creatorcontrib>Dumez, Jean-Nicolas</creatorcontrib><description>A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.</description><identifier>ISSN: 0079-6565</identifier><identifier>EISSN: 1873-3301</identifier><identifier>DOI: 10.1016/j.pnmrs.2018.08.001</identifier><identifier>PMID: 30527133</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Analytical chemistry ; Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Progress in nuclear magnetic resonance spectroscopy, 2018-12, Vol.109, p.101-134</ispartof><rights>Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</citedby><cites>FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</cites><orcidid>0000-0002-5394-8001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30527133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03494578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumez, Jean-Nicolas</creatorcontrib><title>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</title><title>Progress in nuclear magnetic resonance spectroscopy</title><addtitle>Prog Nucl Magn Reson Spectrosc</addtitle><description>A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.</description><subject>Analytical chemistry</subject><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0079-6565</issn><issn>1873-3301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMobk7_AkH6qA-dl1zTtI9jqBOmwtTnkKXp2tE2tWmF_fe22xx8cHD3--64j5BbClMKNHzcTuuqbNyUAY2m0AvoGRnTSKCPCPScjAFE7Ic85CNy5dwWAHjIxCUZIXAmKOKYrD5r1eaq8EylbZJXG09VieeOTWcKo9vcVl5p2swmzssrL8s3md8YZ4tuP3p_W_WGnmus07beXZOLVBXO3BzrhHw_P33NF_7y4-V1Plv6GqOg9WkSizjVJjUppDECM5xHinKNYcqMDqJkLSIWUYFxzIUGFvB1P-UYYJJgwHFCHg57M1XIuslL1eykVblczJZy6AEGccBF9Et79v7A1o396YxrZZk7bYpCVcZ2TjLKOQ1iYAOKB1T3_7jGpKfdFOQQvNzKffByCF5CLxhcd8cD3bo0ycnznzT-AYLvf54</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Dumez, Jean-Nicolas</creator><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5394-8001</orcidid></search><sort><creationdate>201812</creationdate><title>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</title><author>Dumez, Jean-Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumez, Jean-Nicolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumez, Jean-Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</atitle><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle><addtitle>Prog Nucl Magn Reson Spectrosc</addtitle><date>2018-12</date><risdate>2018</risdate><volume>109</volume><spage>101</spage><epage>134</epage><pages>101-134</pages><issn>0079-6565</issn><eissn>1873-3301</eissn><abstract>A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>30527133</pmid><doi>10.1016/j.pnmrs.2018.08.001</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-5394-8001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0079-6565
ispartof Progress in nuclear magnetic resonance spectroscopy, 2018-12, Vol.109, p.101-134
issn 0079-6565
1873-3301
language eng
recordid cdi_hal_primary_oai_HAL_hal_03494578v1
source Elsevier
subjects Analytical chemistry
Chemical Sciences
or physical chemistry
Theoretical and
title Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20encoding%20and%20spatial%20selection%20methods%20in%20high-resolution%20NMR%20spectroscopy&rft.jtitle=Progress%20in%20nuclear%20magnetic%20resonance%20spectroscopy&rft.au=Dumez,%20Jean-Nicolas&rft.date=2018-12&rft.volume=109&rft.spage=101&rft.epage=134&rft.pages=101-134&rft.issn=0079-6565&rft.eissn=1873-3301&rft_id=info:doi/10.1016/j.pnmrs.2018.08.001&rft_dat=%3Cproquest_hal_p%3E2155149021%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2155149021&rft_id=info:pmid/30527133&rfr_iscdi=true