Loading…
Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy
A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different p...
Saved in:
Published in: | Progress in nuclear magnetic resonance spectroscopy 2018-12, Vol.109, p.101-134 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453 |
container_end_page | 134 |
container_issue | |
container_start_page | 101 |
container_title | Progress in nuclear magnetic resonance spectroscopy |
container_volume | 109 |
creator | Dumez, Jean-Nicolas |
description | A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications. |
doi_str_mv | 10.1016/j.pnmrs.2018.08.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03494578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155149021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMobk7_AkH6qA-dl1zTtI9jqBOmwtTnkKXp2tE2tWmF_fe22xx8cHD3--64j5BbClMKNHzcTuuqbNyUAY2m0AvoGRnTSKCPCPScjAFE7Ic85CNy5dwWAHjIxCUZIXAmKOKYrD5r1eaq8EylbZJXG09VieeOTWcKo9vcVl5p2swmzssrL8s3md8YZ4tuP3p_W_WGnmus07beXZOLVBXO3BzrhHw_P33NF_7y4-V1Plv6GqOg9WkSizjVJjUppDECM5xHinKNYcqMDqJkLSIWUYFxzIUGFvB1P-UYYJJgwHFCHg57M1XIuslL1eykVblczJZy6AEGccBF9Et79v7A1o396YxrZZk7bYpCVcZ2TjLKOQ1iYAOKB1T3_7jGpKfdFOQQvNzKffByCF5CLxhcd8cD3bo0ycnznzT-AYLvf54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155149021</pqid></control><display><type>article</type><title>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</title><source>Elsevier</source><creator>Dumez, Jean-Nicolas</creator><creatorcontrib>Dumez, Jean-Nicolas</creatorcontrib><description>A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.</description><identifier>ISSN: 0079-6565</identifier><identifier>EISSN: 1873-3301</identifier><identifier>DOI: 10.1016/j.pnmrs.2018.08.001</identifier><identifier>PMID: 30527133</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Analytical chemistry ; Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Progress in nuclear magnetic resonance spectroscopy, 2018-12, Vol.109, p.101-134</ispartof><rights>Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</citedby><cites>FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</cites><orcidid>0000-0002-5394-8001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30527133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03494578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumez, Jean-Nicolas</creatorcontrib><title>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</title><title>Progress in nuclear magnetic resonance spectroscopy</title><addtitle>Prog Nucl Magn Reson Spectrosc</addtitle><description>A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.</description><subject>Analytical chemistry</subject><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0079-6565</issn><issn>1873-3301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMobk7_AkH6qA-dl1zTtI9jqBOmwtTnkKXp2tE2tWmF_fe22xx8cHD3--64j5BbClMKNHzcTuuqbNyUAY2m0AvoGRnTSKCPCPScjAFE7Ic85CNy5dwWAHjIxCUZIXAmKOKYrD5r1eaq8EylbZJXG09VieeOTWcKo9vcVl5p2swmzssrL8s3md8YZ4tuP3p_W_WGnmus07beXZOLVBXO3BzrhHw_P33NF_7y4-V1Plv6GqOg9WkSizjVJjUppDECM5xHinKNYcqMDqJkLSIWUYFxzIUGFvB1P-UYYJJgwHFCHg57M1XIuslL1eykVblczJZy6AEGccBF9Et79v7A1o396YxrZZk7bYpCVcZ2TjLKOQ1iYAOKB1T3_7jGpKfdFOQQvNzKffByCF5CLxhcd8cD3bo0ycnznzT-AYLvf54</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Dumez, Jean-Nicolas</creator><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5394-8001</orcidid></search><sort><creationdate>201812</creationdate><title>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</title><author>Dumez, Jean-Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumez, Jean-Nicolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumez, Jean-Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy</atitle><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle><addtitle>Prog Nucl Magn Reson Spectrosc</addtitle><date>2018-12</date><risdate>2018</risdate><volume>109</volume><spage>101</spage><epage>134</epage><pages>101-134</pages><issn>0079-6565</issn><eissn>1873-3301</eissn><abstract>A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>30527133</pmid><doi>10.1016/j.pnmrs.2018.08.001</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-5394-8001</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6565 |
ispartof | Progress in nuclear magnetic resonance spectroscopy, 2018-12, Vol.109, p.101-134 |
issn | 0079-6565 1873-3301 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03494578v1 |
source | Elsevier |
subjects | Analytical chemistry Chemical Sciences or physical chemistry Theoretical and |
title | Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20encoding%20and%20spatial%20selection%20methods%20in%20high-resolution%20NMR%20spectroscopy&rft.jtitle=Progress%20in%20nuclear%20magnetic%20resonance%20spectroscopy&rft.au=Dumez,%20Jean-Nicolas&rft.date=2018-12&rft.volume=109&rft.spage=101&rft.epage=134&rft.pages=101-134&rft.issn=0079-6565&rft.eissn=1873-3301&rft_id=info:doi/10.1016/j.pnmrs.2018.08.001&rft_dat=%3Cproquest_hal_p%3E2155149021%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-1d979fcefef0f9302e558a15c36f2ec48db78281739957c0245b15c5343dd3453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2155149021&rft_id=info:pmid/30527133&rfr_iscdi=true |