Loading…

Influence of the High-Temperature Mechanical Loading Mode on the Flow Behavior and Microstructural Evolution of a Nb-Stabilized Austenitic Stainless Steel

The present work addresses the effect of three high-temperature deformation modes, namely, torsion, uniaxial compression, and plane strain compression, on flow stress vs. strain curves, as well as on post-dynamic and static recrystallization of 316Nb austenitic stainless steel. Using a Hosford crite...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.610-626
Main Authors: Cliche, N., Ringeval, S., Georges, E., Bellus, J., Petit, P., Cortial, F., Heuzé, J.-L., Gourgues-Lorenzon, A.-F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c304t-7fb25b57c1ef305da16708cb394de87ce6a52437c7888d32e374930f146a62c33
container_end_page 626
container_issue 2
container_start_page 610
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 53
creator Cliche, N.
Ringeval, S.
Georges, E.
Bellus, J.
Petit, P.
Cortial, F.
Heuzé, J.-L.
Gourgues-Lorenzon, A.-F.
description The present work addresses the effect of three high-temperature deformation modes, namely, torsion, uniaxial compression, and plane strain compression, on flow stress vs. strain curves, as well as on post-dynamic and static recrystallization of 316Nb austenitic stainless steel. Using a Hosford criterion instead of the classical von Mises criterion enables a unified description of the stress–strain curves obtained under different loading modes. This work also revealed that the loading mode had no significant effect on post-dynamic and static recrystallization phenomena. The amount of niobium atoms in solid solution might be preponderant in the control of recrystallization of 316Nb.
doi_str_mv 10.1007/s11661-021-06536-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03499953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619964374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-7fb25b57c1ef305da16708cb394de87ce6a52437c7888d32e374930f146a62c33</originalsourceid><addsrcrecordid>eNp9kcGOFCEQhjtGE9fVF_BE4skDCg0NzXHc7DqbzOjB9UxounqaDQsj0GP0UXxamW2jNw-VqlS-_y_C3zSvKXlHCZHvM6VCUEzaWqJjAssnzQXtOMNUcfK0zkQy3ImWPW9e5HxPCKGKiYvm122Y_ALBAooTKjOgrTvM-A4ejpBMWRKgPdjZBGeNR7toRhcOaB_HyodH_sbH7-gDzObkYkImjGjvbIq5pMVWfVVdn6Jfiqt8PWHQpwF_KWZw3v2EEW2WXCC44iyqWxc85FwnAP-yeTYZn-HVn37ZfL25vrva4t3nj7dXmx22jPCC5TS03dBJS2FipBsNFZL0dmCKj9BLC8J0LWfSyr7vR9YCk1wxMlEujGgtY5fN29V3Nl4fk3sw6YeOxuntZqfPO8K4UqpjJ1rZNyt7TPHbArno-7ikUJ-nW0GVEvUQr1S7Uud_yAmmv7aU6HNees1L17z0Y15aVhFbRbnC4QDpn_V_VL8BPcCY4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619964374</pqid></control><display><type>article</type><title>Influence of the High-Temperature Mechanical Loading Mode on the Flow Behavior and Microstructural Evolution of a Nb-Stabilized Austenitic Stainless Steel</title><source>Springer Nature</source><creator>Cliche, N. ; Ringeval, S. ; Georges, E. ; Bellus, J. ; Petit, P. ; Cortial, F. ; Heuzé, J.-L. ; Gourgues-Lorenzon, A.-F.</creator><creatorcontrib>Cliche, N. ; Ringeval, S. ; Georges, E. ; Bellus, J. ; Petit, P. ; Cortial, F. ; Heuzé, J.-L. ; Gourgues-Lorenzon, A.-F.</creatorcontrib><description>The present work addresses the effect of three high-temperature deformation modes, namely, torsion, uniaxial compression, and plane strain compression, on flow stress vs. strain curves, as well as on post-dynamic and static recrystallization of 316Nb austenitic stainless steel. Using a Hosford criterion instead of the classical von Mises criterion enables a unified description of the stress–strain curves obtained under different loading modes. This work also revealed that the loading mode had no significant effect on post-dynamic and static recrystallization phenomena. The amount of niobium atoms in solid solution might be preponderant in the control of recrystallization of 316Nb.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06536-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenitic stainless steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Criteria ; Deformation effects ; Engineering Sciences ; High temperature ; Materials ; Materials Science ; Metallic Materials ; Nanotechnology ; Niobium ; Original Research Article ; Plane strain ; Solid solutions ; Stainless steel ; Stress-strain curves ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Yield strength</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.610-626</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-7fb25b57c1ef305da16708cb394de87ce6a52437c7888d32e374930f146a62c33</cites><orcidid>0000-0002-5671-9415 ; 0000-0001-7624-9222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03499953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cliche, N.</creatorcontrib><creatorcontrib>Ringeval, S.</creatorcontrib><creatorcontrib>Georges, E.</creatorcontrib><creatorcontrib>Bellus, J.</creatorcontrib><creatorcontrib>Petit, P.</creatorcontrib><creatorcontrib>Cortial, F.</creatorcontrib><creatorcontrib>Heuzé, J.-L.</creatorcontrib><creatorcontrib>Gourgues-Lorenzon, A.-F.</creatorcontrib><title>Influence of the High-Temperature Mechanical Loading Mode on the Flow Behavior and Microstructural Evolution of a Nb-Stabilized Austenitic Stainless Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The present work addresses the effect of three high-temperature deformation modes, namely, torsion, uniaxial compression, and plane strain compression, on flow stress vs. strain curves, as well as on post-dynamic and static recrystallization of 316Nb austenitic stainless steel. Using a Hosford criterion instead of the classical von Mises criterion enables a unified description of the stress–strain curves obtained under different loading modes. This work also revealed that the loading mode had no significant effect on post-dynamic and static recrystallization phenomena. The amount of niobium atoms in solid solution might be preponderant in the control of recrystallization of 316Nb.</description><subject>Austenitic stainless steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Criteria</subject><subject>Deformation effects</subject><subject>Engineering Sciences</subject><subject>High temperature</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Niobium</subject><subject>Original Research Article</subject><subject>Plane strain</subject><subject>Solid solutions</subject><subject>Stainless steel</subject><subject>Stress-strain curves</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Yield strength</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcGOFCEQhjtGE9fVF_BE4skDCg0NzXHc7DqbzOjB9UxounqaDQsj0GP0UXxamW2jNw-VqlS-_y_C3zSvKXlHCZHvM6VCUEzaWqJjAssnzQXtOMNUcfK0zkQy3ImWPW9e5HxPCKGKiYvm122Y_ALBAooTKjOgrTvM-A4ejpBMWRKgPdjZBGeNR7toRhcOaB_HyodH_sbH7-gDzObkYkImjGjvbIq5pMVWfVVdn6Jfiqt8PWHQpwF_KWZw3v2EEW2WXCC44iyqWxc85FwnAP-yeTYZn-HVn37ZfL25vrva4t3nj7dXmx22jPCC5TS03dBJS2FipBsNFZL0dmCKj9BLC8J0LWfSyr7vR9YCk1wxMlEujGgtY5fN29V3Nl4fk3sw6YeOxuntZqfPO8K4UqpjJ1rZNyt7TPHbArno-7ikUJ-nW0GVEvUQr1S7Uud_yAmmv7aU6HNees1L17z0Y15aVhFbRbnC4QDpn_V_VL8BPcCY4g</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Cliche, N.</creator><creator>Ringeval, S.</creator><creator>Georges, E.</creator><creator>Bellus, J.</creator><creator>Petit, P.</creator><creator>Cortial, F.</creator><creator>Heuzé, J.-L.</creator><creator>Gourgues-Lorenzon, A.-F.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag/ASM International</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5671-9415</orcidid><orcidid>https://orcid.org/0000-0001-7624-9222</orcidid></search><sort><creationdate>20220201</creationdate><title>Influence of the High-Temperature Mechanical Loading Mode on the Flow Behavior and Microstructural Evolution of a Nb-Stabilized Austenitic Stainless Steel</title><author>Cliche, N. ; Ringeval, S. ; Georges, E. ; Bellus, J. ; Petit, P. ; Cortial, F. ; Heuzé, J.-L. ; Gourgues-Lorenzon, A.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-7fb25b57c1ef305da16708cb394de87ce6a52437c7888d32e374930f146a62c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Austenitic stainless steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Criteria</topic><topic>Deformation effects</topic><topic>Engineering Sciences</topic><topic>High temperature</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Niobium</topic><topic>Original Research Article</topic><topic>Plane strain</topic><topic>Solid solutions</topic><topic>Stainless steel</topic><topic>Stress-strain curves</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cliche, N.</creatorcontrib><creatorcontrib>Ringeval, S.</creatorcontrib><creatorcontrib>Georges, E.</creatorcontrib><creatorcontrib>Bellus, J.</creatorcontrib><creatorcontrib>Petit, P.</creatorcontrib><creatorcontrib>Cortial, F.</creatorcontrib><creatorcontrib>Heuzé, J.-L.</creatorcontrib><creatorcontrib>Gourgues-Lorenzon, A.-F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library (ProQuest Database)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cliche, N.</au><au>Ringeval, S.</au><au>Georges, E.</au><au>Bellus, J.</au><au>Petit, P.</au><au>Cortial, F.</au><au>Heuzé, J.-L.</au><au>Gourgues-Lorenzon, A.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the High-Temperature Mechanical Loading Mode on the Flow Behavior and Microstructural Evolution of a Nb-Stabilized Austenitic Stainless Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>53</volume><issue>2</issue><spage>610</spage><epage>626</epage><pages>610-626</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The present work addresses the effect of three high-temperature deformation modes, namely, torsion, uniaxial compression, and plane strain compression, on flow stress vs. strain curves, as well as on post-dynamic and static recrystallization of 316Nb austenitic stainless steel. Using a Hosford criterion instead of the classical von Mises criterion enables a unified description of the stress–strain curves obtained under different loading modes. This work also revealed that the loading mode had no significant effect on post-dynamic and static recrystallization phenomena. The amount of niobium atoms in solid solution might be preponderant in the control of recrystallization of 316Nb.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06536-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5671-9415</orcidid><orcidid>https://orcid.org/0000-0001-7624-9222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.610-626
issn 1073-5623
1543-1940
language eng
recordid cdi_hal_primary_oai_HAL_hal_03499953v1
source Springer Nature
subjects Austenitic stainless steels
Characterization and Evaluation of Materials
Chemistry and Materials Science
Criteria
Deformation effects
Engineering Sciences
High temperature
Materials
Materials Science
Metallic Materials
Nanotechnology
Niobium
Original Research Article
Plane strain
Solid solutions
Stainless steel
Stress-strain curves
Structural Materials
Surfaces and Interfaces
Thin Films
Yield strength
title Influence of the High-Temperature Mechanical Loading Mode on the Flow Behavior and Microstructural Evolution of a Nb-Stabilized Austenitic Stainless Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20High-Temperature%20Mechanical%20Loading%20Mode%20on%20the%20Flow%20Behavior%20and%20Microstructural%20Evolution%20of%20a%20Nb-Stabilized%20Austenitic%20Stainless%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Cliche,%20N.&rft.date=2022-02-01&rft.volume=53&rft.issue=2&rft.spage=610&rft.epage=626&rft.pages=610-626&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06536-7&rft_dat=%3Cproquest_hal_p%3E2619964374%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-7fb25b57c1ef305da16708cb394de87ce6a52437c7888d32e374930f146a62c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619964374&rft_id=info:pmid/&rfr_iscdi=true