Loading…

Non coercive unbounded first order Mean Field Games: The Heisenberg example

In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizon...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 2022-02, Vol.309, p.809-840
Main Authors: Mannucci, Paola, Marchi, Claudio, Tchou, Nicoletta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293
cites cdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293
container_end_page 840
container_issue
container_start_page 809
container_title Journal of Differential Equations
container_volume 309
creator Mannucci, Paola
Marchi, Claudio
Tchou, Nicoletta
description In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.
doi_str_mv 10.1016/j.jde.2021.11.029
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03505088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039621007336</els_id><sourcerecordid>S0022039621007336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlyqHFTpu2gdM0sQ0x4DLOUZa4LNXWTsmY4N_TMcQR-eAP-Xllv4xdI6QIWNw2aeMoFSAwRUxBqBM2QFCQiDITp2wAIEQCmSrO2UWMDQCiLOSAPb10LbcdBev3xD_aZffROnK89iHueBccBf5MpuUTT2vHp2ZD8Y4vVsRn5CO1SwrvnD7NZrumS3ZWm3Wkq988ZG-Th8V4lsxfp4_j0TyxWZnvEiydQ3TS5A7z_q4SpVBoQZZZrqSQtspq2xclSZW5QjhR9aGW1EN9q7Ihuznqrsxab4PfmPClO-P1bDTXhxlkEiRU1R77XTzu2tDFGKj-AxD0wTnd6N45fXBOI2r40b8_MtQ_sfcUdLSeWkvOB7I77Tr_D_0N_DpzYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non coercive unbounded first order Mean Field Games: The Heisenberg example</title><source>ScienceDirect Freedom Collection</source><creator>Mannucci, Paola ; Marchi, Claudio ; Tchou, Nicoletta</creator><creatorcontrib>Mannucci, Paola ; Marchi, Claudio ; Tchou, Nicoletta</creatorcontrib><description>In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2021.11.029</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of PDEs ; Continuity equation ; Degenerate optimal control problem ; First order Hamilton-Jacobi equations ; Fokker-Planck equation ; Heisenberg group ; Heisenberg-type groups ; Mathematics ; Mean Field Games ; Noncoercive Hamiltonian ; Optimization and Control</subject><ispartof>Journal of Differential Equations, 2022-02, Vol.309, p.809-840</ispartof><rights>2021 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</citedby><cites>FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</cites><orcidid>0000-0003-0896-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03505088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannucci, Paola</creatorcontrib><creatorcontrib>Marchi, Claudio</creatorcontrib><creatorcontrib>Tchou, Nicoletta</creatorcontrib><title>Non coercive unbounded first order Mean Field Games: The Heisenberg example</title><title>Journal of Differential Equations</title><description>In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.</description><subject>Analysis of PDEs</subject><subject>Continuity equation</subject><subject>Degenerate optimal control problem</subject><subject>First order Hamilton-Jacobi equations</subject><subject>Fokker-Planck equation</subject><subject>Heisenberg group</subject><subject>Heisenberg-type groups</subject><subject>Mathematics</subject><subject>Mean Field Games</subject><subject>Noncoercive Hamiltonian</subject><subject>Optimization and Control</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlyqHFTpu2gdM0sQ0x4DLOUZa4LNXWTsmY4N_TMcQR-eAP-Xllv4xdI6QIWNw2aeMoFSAwRUxBqBM2QFCQiDITp2wAIEQCmSrO2UWMDQCiLOSAPb10LbcdBev3xD_aZffROnK89iHueBccBf5MpuUTT2vHp2ZD8Y4vVsRn5CO1SwrvnD7NZrumS3ZWm3Wkq988ZG-Th8V4lsxfp4_j0TyxWZnvEiydQ3TS5A7z_q4SpVBoQZZZrqSQtspq2xclSZW5QjhR9aGW1EN9q7Ihuznqrsxab4PfmPClO-P1bDTXhxlkEiRU1R77XTzu2tDFGKj-AxD0wTnd6N45fXBOI2r40b8_MtQ_sfcUdLSeWkvOB7I77Tr_D_0N_DpzYQ</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Mannucci, Paola</creator><creator>Marchi, Claudio</creator><creator>Tchou, Nicoletta</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0896-2813</orcidid></search><sort><creationdate>20220205</creationdate><title>Non coercive unbounded first order Mean Field Games: The Heisenberg example</title><author>Mannucci, Paola ; Marchi, Claudio ; Tchou, Nicoletta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Continuity equation</topic><topic>Degenerate optimal control problem</topic><topic>First order Hamilton-Jacobi equations</topic><topic>Fokker-Planck equation</topic><topic>Heisenberg group</topic><topic>Heisenberg-type groups</topic><topic>Mathematics</topic><topic>Mean Field Games</topic><topic>Noncoercive Hamiltonian</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannucci, Paola</creatorcontrib><creatorcontrib>Marchi, Claudio</creatorcontrib><creatorcontrib>Tchou, Nicoletta</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannucci, Paola</au><au>Marchi, Claudio</au><au>Tchou, Nicoletta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non coercive unbounded first order Mean Field Games: The Heisenberg example</atitle><jtitle>Journal of Differential Equations</jtitle><date>2022-02-05</date><risdate>2022</risdate><volume>309</volume><spage>809</spage><epage>840</epage><pages>809-840</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2021.11.029</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0896-2813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 2022-02, Vol.309, p.809-840
issn 0022-0396
1090-2732
language eng
recordid cdi_hal_primary_oai_HAL_hal_03505088v1
source ScienceDirect Freedom Collection
subjects Analysis of PDEs
Continuity equation
Degenerate optimal control problem
First order Hamilton-Jacobi equations
Fokker-Planck equation
Heisenberg group
Heisenberg-type groups
Mathematics
Mean Field Games
Noncoercive Hamiltonian
Optimization and Control
title Non coercive unbounded first order Mean Field Games: The Heisenberg example
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%20coercive%20unbounded%20first%20order%20Mean%20Field%20Games:%20The%20Heisenberg%20example&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Mannucci,%20Paola&rft.date=2022-02-05&rft.volume=309&rft.spage=809&rft.epage=840&rft.pages=809-840&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2021.11.029&rft_dat=%3Celsevier_hal_p%3ES0022039621007336%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true