Loading…
Non coercive unbounded first order Mean Field Games: The Heisenberg example
In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizon...
Saved in:
Published in: | Journal of Differential Equations 2022-02, Vol.309, p.809-840 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293 |
container_end_page | 840 |
container_issue | |
container_start_page | 809 |
container_title | Journal of Differential Equations |
container_volume | 309 |
creator | Mannucci, Paola Marchi, Claudio Tchou, Nicoletta |
description | In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures. |
doi_str_mv | 10.1016/j.jde.2021.11.029 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03505088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039621007336</els_id><sourcerecordid>S0022039621007336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlyqHFTpu2gdM0sQ0x4DLOUZa4LNXWTsmY4N_TMcQR-eAP-Xllv4xdI6QIWNw2aeMoFSAwRUxBqBM2QFCQiDITp2wAIEQCmSrO2UWMDQCiLOSAPb10LbcdBev3xD_aZffROnK89iHueBccBf5MpuUTT2vHp2ZD8Y4vVsRn5CO1SwrvnD7NZrumS3ZWm3Wkq988ZG-Th8V4lsxfp4_j0TyxWZnvEiydQ3TS5A7z_q4SpVBoQZZZrqSQtspq2xclSZW5QjhR9aGW1EN9q7Ihuznqrsxab4PfmPClO-P1bDTXhxlkEiRU1R77XTzu2tDFGKj-AxD0wTnd6N45fXBOI2r40b8_MtQ_sfcUdLSeWkvOB7I77Tr_D_0N_DpzYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non coercive unbounded first order Mean Field Games: The Heisenberg example</title><source>ScienceDirect Freedom Collection</source><creator>Mannucci, Paola ; Marchi, Claudio ; Tchou, Nicoletta</creator><creatorcontrib>Mannucci, Paola ; Marchi, Claudio ; Tchou, Nicoletta</creatorcontrib><description>In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2021.11.029</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of PDEs ; Continuity equation ; Degenerate optimal control problem ; First order Hamilton-Jacobi equations ; Fokker-Planck equation ; Heisenberg group ; Heisenberg-type groups ; Mathematics ; Mean Field Games ; Noncoercive Hamiltonian ; Optimization and Control</subject><ispartof>Journal of Differential Equations, 2022-02, Vol.309, p.809-840</ispartof><rights>2021 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</citedby><cites>FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</cites><orcidid>0000-0003-0896-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03505088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannucci, Paola</creatorcontrib><creatorcontrib>Marchi, Claudio</creatorcontrib><creatorcontrib>Tchou, Nicoletta</creatorcontrib><title>Non coercive unbounded first order Mean Field Games: The Heisenberg example</title><title>Journal of Differential Equations</title><description>In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.</description><subject>Analysis of PDEs</subject><subject>Continuity equation</subject><subject>Degenerate optimal control problem</subject><subject>First order Hamilton-Jacobi equations</subject><subject>Fokker-Planck equation</subject><subject>Heisenberg group</subject><subject>Heisenberg-type groups</subject><subject>Mathematics</subject><subject>Mean Field Games</subject><subject>Noncoercive Hamiltonian</subject><subject>Optimization and Control</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlyqHFTpu2gdM0sQ0x4DLOUZa4LNXWTsmY4N_TMcQR-eAP-Xllv4xdI6QIWNw2aeMoFSAwRUxBqBM2QFCQiDITp2wAIEQCmSrO2UWMDQCiLOSAPb10LbcdBev3xD_aZffROnK89iHueBccBf5MpuUTT2vHp2ZD8Y4vVsRn5CO1SwrvnD7NZrumS3ZWm3Wkq988ZG-Th8V4lsxfp4_j0TyxWZnvEiydQ3TS5A7z_q4SpVBoQZZZrqSQtspq2xclSZW5QjhR9aGW1EN9q7Ihuznqrsxab4PfmPClO-P1bDTXhxlkEiRU1R77XTzu2tDFGKj-AxD0wTnd6N45fXBOI2r40b8_MtQ_sfcUdLSeWkvOB7I77Tr_D_0N_DpzYQ</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Mannucci, Paola</creator><creator>Marchi, Claudio</creator><creator>Tchou, Nicoletta</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0896-2813</orcidid></search><sort><creationdate>20220205</creationdate><title>Non coercive unbounded first order Mean Field Games: The Heisenberg example</title><author>Mannucci, Paola ; Marchi, Claudio ; Tchou, Nicoletta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Continuity equation</topic><topic>Degenerate optimal control problem</topic><topic>First order Hamilton-Jacobi equations</topic><topic>Fokker-Planck equation</topic><topic>Heisenberg group</topic><topic>Heisenberg-type groups</topic><topic>Mathematics</topic><topic>Mean Field Games</topic><topic>Noncoercive Hamiltonian</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannucci, Paola</creatorcontrib><creatorcontrib>Marchi, Claudio</creatorcontrib><creatorcontrib>Tchou, Nicoletta</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannucci, Paola</au><au>Marchi, Claudio</au><au>Tchou, Nicoletta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non coercive unbounded first order Mean Field Games: The Heisenberg example</atitle><jtitle>Journal of Differential Equations</jtitle><date>2022-02-05</date><risdate>2022</risdate><volume>309</volume><spage>809</spage><epage>840</epage><pages>809-840</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2021.11.029</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0896-2813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0396 |
ispartof | Journal of Differential Equations, 2022-02, Vol.309, p.809-840 |
issn | 0022-0396 1090-2732 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03505088v1 |
source | ScienceDirect Freedom Collection |
subjects | Analysis of PDEs Continuity equation Degenerate optimal control problem First order Hamilton-Jacobi equations Fokker-Planck equation Heisenberg group Heisenberg-type groups Mathematics Mean Field Games Noncoercive Hamiltonian Optimization and Control |
title | Non coercive unbounded first order Mean Field Games: The Heisenberg example |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%20coercive%20unbounded%20first%20order%20Mean%20Field%20Games:%20The%20Heisenberg%20example&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Mannucci,%20Paola&rft.date=2022-02-05&rft.volume=309&rft.spage=809&rft.epage=840&rft.pages=809-840&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2021.11.029&rft_dat=%3Celsevier_hal_p%3ES0022039621007336%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-17dd11d5a4d14002715291c057349525c83fc9527e593d62d282829be11dd6293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |