Loading…

A generalized skein relation for Khovanov homology and a categorification of the θ-invariant

The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2021-12, Vol.151 (6), p.1731-1757
Main Authors: Chlouveraki, M., Goundaroulis, D., Kontogeorgis, A., Lambropoulou, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c328t-a32f2142167687de137f9d7ec6e324f460d9238a50652e7e732c2a6777ba429b3
container_end_page 1757
container_issue 6
container_start_page 1731
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 151
creator Chlouveraki, M.
Goundaroulis, D.
Kontogeorgis, A.
Lambropoulou, S.
description The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.
doi_str_mv 10.1017/prm.2020.78
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03524578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_prm_2020_78</cupid><sourcerecordid>2607516852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a32f2142167687de137f9d7ec6e324f460d9238a50652e7e732c2a6777ba429b3</originalsourceid><addsrcrecordid>eNpt0MFKw0AQBuBFFKzVky-w4EkkdXc2yaTHUtSKBS96lGWabJqtSbZu0kJ9Mp_CZzIlRS-ehhk-foafsUspRlJIvF37agQCxAiTIzaQIaoAJYTHbCCUSAKQIjplZ02zEkLESYQD9jbhS1MbT6X9NBlv3o2tuTcltdbVPHeePxVuS7Xb8sJVrnTLHac648RTas3SeZvbtMcu521h-PdXYOsteUt1e85Ociobc3GYQ_Z6f_cynQXz54fH6WQepAqSNiAFOcgQZIxxgpmRCvNxhiaNjYIwD2ORjUElFIk4AoMGFaRAMSIuKITxQg3ZdZ9bUKnX3lbkd9qR1bPJXO9vQkUQRphsZWeverv27mNjmlav3MbX3XsaYoGR7IqBTt30KvWuabzJf2Ol0Puuu73S-641Jp0ODpqqhbfZ0vyF_ud_ANTWgDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607516852</pqid></control><display><type>article</type><title>A generalized skein relation for Khovanov homology and a categorification of the θ-invariant</title><source>Cambridge University Press</source><creator>Chlouveraki, M. ; Goundaroulis, D. ; Kontogeorgis, A. ; Lambropoulou, S.</creator><creatorcontrib>Chlouveraki, M. ; Goundaroulis, D. ; Kontogeorgis, A. ; Lambropoulou, S.</creatorcontrib><description>The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2020.78</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Algebra ; Analysis of PDEs ; Homology ; Invariants ; Mathematics ; Polynomials ; Skeins</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2021-12, Vol.151 (6), p.1731-1757</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-a32f2142167687de137f9d7ec6e324f460d9238a50652e7e732c2a6777ba429b3</cites><orcidid>0000-0002-6869-8367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210520000785/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72832</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03524578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chlouveraki, M.</creatorcontrib><creatorcontrib>Goundaroulis, D.</creatorcontrib><creatorcontrib>Kontogeorgis, A.</creatorcontrib><creatorcontrib>Lambropoulou, S.</creatorcontrib><title>A generalized skein relation for Khovanov homology and a categorification of the θ-invariant</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.</description><subject>Algebra</subject><subject>Analysis of PDEs</subject><subject>Homology</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Skeins</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpt0MFKw0AQBuBFFKzVky-w4EkkdXc2yaTHUtSKBS96lGWabJqtSbZu0kJ9Mp_CZzIlRS-ehhk-foafsUspRlJIvF37agQCxAiTIzaQIaoAJYTHbCCUSAKQIjplZ02zEkLESYQD9jbhS1MbT6X9NBlv3o2tuTcltdbVPHeePxVuS7Xb8sJVrnTLHac648RTas3SeZvbtMcu521h-PdXYOsteUt1e85Ociobc3GYQ_Z6f_cynQXz54fH6WQepAqSNiAFOcgQZIxxgpmRCvNxhiaNjYIwD2ORjUElFIk4AoMGFaRAMSIuKITxQg3ZdZ9bUKnX3lbkd9qR1bPJXO9vQkUQRphsZWeverv27mNjmlav3MbX3XsaYoGR7IqBTt30KvWuabzJf2Ol0Puuu73S-641Jp0ODpqqhbfZ0vyF_ud_ANTWgDY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Chlouveraki, M.</creator><creator>Goundaroulis, D.</creator><creator>Kontogeorgis, A.</creator><creator>Lambropoulou, S.</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><general>Royal Society of Edinburgh</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6869-8367</orcidid></search><sort><creationdate>20211201</creationdate><title>A generalized skein relation for Khovanov homology and a categorification of the θ-invariant</title><author>Chlouveraki, M. ; Goundaroulis, D. ; Kontogeorgis, A. ; Lambropoulou, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a32f2142167687de137f9d7ec6e324f460d9238a50652e7e732c2a6777ba429b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis of PDEs</topic><topic>Homology</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Skeins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chlouveraki, M.</creatorcontrib><creatorcontrib>Goundaroulis, D.</creatorcontrib><creatorcontrib>Kontogeorgis, A.</creatorcontrib><creatorcontrib>Lambropoulou, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chlouveraki, M.</au><au>Goundaroulis, D.</au><au>Kontogeorgis, A.</au><au>Lambropoulou, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized skein relation for Khovanov homology and a categorification of the θ-invariant</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>151</volume><issue>6</issue><spage>1731</spage><epage>1757</epage><pages>1731-1757</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/prm.2020.78</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-6869-8367</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2021-12, Vol.151 (6), p.1731-1757
issn 0308-2105
1473-7124
language eng
recordid cdi_hal_primary_oai_HAL_hal_03524578v1
source Cambridge University Press
subjects Algebra
Analysis of PDEs
Homology
Invariants
Mathematics
Polynomials
Skeins
title A generalized skein relation for Khovanov homology and a categorification of the θ-invariant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20skein%20relation%20for%20Khovanov%20homology%20and%20a%20categorification%20of%20the%20%CE%B8-invariant&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Chlouveraki,%20M.&rft.date=2021-12-01&rft.volume=151&rft.issue=6&rft.spage=1731&rft.epage=1757&rft.pages=1731-1757&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2020.78&rft_dat=%3Cproquest_hal_p%3E2607516852%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-a32f2142167687de137f9d7ec6e324f460d9238a50652e7e732c2a6777ba429b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607516852&rft_id=info:pmid/&rft_cupid=10_1017_prm_2020_78&rfr_iscdi=true