Loading…
Simulation of Spinal Muscle Control in Human Gait Using OpenSim
This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the s...
Saved in:
Published in: | IEEE transactions on medical robotics and bionics 2022-02, Vol.4 (1), p.254-265 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3 |
container_end_page | 265 |
container_issue | 1 |
container_start_page | 254 |
container_title | IEEE transactions on medical robotics and bionics |
container_volume | 4 |
creator | Shachykov, Andrii Frere, Julien Henaff, Patrick |
description | This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation. |
doi_str_mv | 10.1109/TMRB.2022.3143263 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03527433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681858</ieee_id><sourcerecordid>2631959128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOYeQLwJeOVFZ06Spu2VzKGbsDFw23VIu0QzuqY2reDbm9IhXp2fw_cfOB9Ct0CmACR73K3fn6eUUDplwBkV7AKNaJyIiIXl5b98jSbeHwkhFGKSMDFCT1t76krVWldhZ_C2tpUq8brzRanx3FVt40psK7zsTqrCC2VbvPe2-sCbWlehe4OujCq9npznGO1fX3bzZbTaLN7ms1VUMJq0EU1FclAQGyWyPAPINQdqNOOUUZZzw0UsEq6B8YyAEQetTZYTkwseUsFzNkYPw91PVcq6sSfV_EinrFzOVrLfERbThDP2DYG9H9i6cV-d9q08uq4Jf3kZ3EAWZ0DTQMFAFY3zvtHm7ywQ2WuVvVbZa5VnraFzN3Ss1vqPz0QKaZyyX484cLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959128</pqid></control><display><type>article</type><title>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shachykov, Andrii ; Frere, Julien ; Henaff, Patrick</creator><creatorcontrib>Shachykov, Andrii ; Frere, Julien ; Henaff, Patrick</creatorcontrib><description>This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2022.3143263</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Biomimetics ; Brain modeling ; Control systems design ; Controllers ; CPG ; Gait ; human walking ; Integrated circuit modeling ; Legged locomotion ; Life Sciences ; Muscles ; Musculoskeletal model ; OpenSim ; Robot kinematics ; Simulation</subject><ispartof>IEEE transactions on medical robotics and bionics, 2022-02, Vol.4 (1), p.254-265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</citedby><cites>FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</cites><orcidid>0000-0002-4778-4514 ; 0000-0002-5186-2466 ; 0000-0003-2353-7647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03527433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shachykov, Andrii</creatorcontrib><creatorcontrib>Frere, Julien</creatorcontrib><creatorcontrib>Henaff, Patrick</creatorcontrib><title>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.</description><subject>Biological system modeling</subject><subject>Biomimetics</subject><subject>Brain modeling</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>CPG</subject><subject>Gait</subject><subject>human walking</subject><subject>Integrated circuit modeling</subject><subject>Legged locomotion</subject><subject>Life Sciences</subject><subject>Muscles</subject><subject>Musculoskeletal model</subject><subject>OpenSim</subject><subject>Robot kinematics</subject><subject>Simulation</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOOYeQLwJeOVFZ06Spu2VzKGbsDFw23VIu0QzuqY2reDbm9IhXp2fw_cfOB9Ct0CmACR73K3fn6eUUDplwBkV7AKNaJyIiIXl5b98jSbeHwkhFGKSMDFCT1t76krVWldhZ_C2tpUq8brzRanx3FVt40psK7zsTqrCC2VbvPe2-sCbWlehe4OujCq9npznGO1fX3bzZbTaLN7ms1VUMJq0EU1FclAQGyWyPAPINQdqNOOUUZZzw0UsEq6B8YyAEQetTZYTkwseUsFzNkYPw91PVcq6sSfV_EinrFzOVrLfERbThDP2DYG9H9i6cV-d9q08uq4Jf3kZ3EAWZ0DTQMFAFY3zvtHm7ywQ2WuVvVbZa5VnraFzN3Ss1vqPz0QKaZyyX484cLw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shachykov, Andrii</creator><creator>Frere, Julien</creator><creator>Henaff, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4778-4514</orcidid><orcidid>https://orcid.org/0000-0002-5186-2466</orcidid><orcidid>https://orcid.org/0000-0003-2353-7647</orcidid></search><sort><creationdate>20220201</creationdate><title>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</title><author>Shachykov, Andrii ; Frere, Julien ; Henaff, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Biomimetics</topic><topic>Brain modeling</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>CPG</topic><topic>Gait</topic><topic>human walking</topic><topic>Integrated circuit modeling</topic><topic>Legged locomotion</topic><topic>Life Sciences</topic><topic>Muscles</topic><topic>Musculoskeletal model</topic><topic>OpenSim</topic><topic>Robot kinematics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shachykov, Andrii</creatorcontrib><creatorcontrib>Frere, Julien</creatorcontrib><creatorcontrib>Henaff, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shachykov, Andrii</au><au>Frere, Julien</au><au>Henaff, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>4</volume><issue>1</issue><spage>254</spage><epage>265</epage><pages>254-265</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2022.3143263</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4778-4514</orcidid><orcidid>https://orcid.org/0000-0002-5186-2466</orcidid><orcidid>https://orcid.org/0000-0003-2353-7647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-3202 |
ispartof | IEEE transactions on medical robotics and bionics, 2022-02, Vol.4 (1), p.254-265 |
issn | 2576-3202 2576-3202 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03527433v1 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Biological system modeling Biomimetics Brain modeling Control systems design Controllers CPG Gait human walking Integrated circuit modeling Legged locomotion Life Sciences Muscles Musculoskeletal model OpenSim Robot kinematics Simulation |
title | Simulation of Spinal Muscle Control in Human Gait Using OpenSim |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Spinal%20Muscle%20Control%20in%20Human%20Gait%20Using%20OpenSim&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Shachykov,%20Andrii&rft.date=2022-02-01&rft.volume=4&rft.issue=1&rft.spage=254&rft.epage=265&rft.pages=254-265&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2022.3143263&rft_dat=%3Cproquest_hal_p%3E2631959128%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631959128&rft_id=info:pmid/&rft_ieee_id=9681858&rfr_iscdi=true |