Loading…

Simulation of Spinal Muscle Control in Human Gait Using OpenSim

This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical robotics and bionics 2022-02, Vol.4 (1), p.254-265
Main Authors: Shachykov, Andrii, Frere, Julien, Henaff, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3
cites cdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3
container_end_page 265
container_issue 1
container_start_page 254
container_title IEEE transactions on medical robotics and bionics
container_volume 4
creator Shachykov, Andrii
Frere, Julien
Henaff, Patrick
description This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.
doi_str_mv 10.1109/TMRB.2022.3143263
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03527433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681858</ieee_id><sourcerecordid>2631959128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOYeQLwJeOVFZ06Spu2VzKGbsDFw23VIu0QzuqY2reDbm9IhXp2fw_cfOB9Ct0CmACR73K3fn6eUUDplwBkV7AKNaJyIiIXl5b98jSbeHwkhFGKSMDFCT1t76krVWldhZ_C2tpUq8brzRanx3FVt40psK7zsTqrCC2VbvPe2-sCbWlehe4OujCq9npznGO1fX3bzZbTaLN7ms1VUMJq0EU1FclAQGyWyPAPINQdqNOOUUZZzw0UsEq6B8YyAEQetTZYTkwseUsFzNkYPw91PVcq6sSfV_EinrFzOVrLfERbThDP2DYG9H9i6cV-d9q08uq4Jf3kZ3EAWZ0DTQMFAFY3zvtHm7ywQ2WuVvVbZa5VnraFzN3Ss1vqPz0QKaZyyX484cLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959128</pqid></control><display><type>article</type><title>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shachykov, Andrii ; Frere, Julien ; Henaff, Patrick</creator><creatorcontrib>Shachykov, Andrii ; Frere, Julien ; Henaff, Patrick</creatorcontrib><description>This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2022.3143263</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Biomimetics ; Brain modeling ; Control systems design ; Controllers ; CPG ; Gait ; human walking ; Integrated circuit modeling ; Legged locomotion ; Life Sciences ; Muscles ; Musculoskeletal model ; OpenSim ; Robot kinematics ; Simulation</subject><ispartof>IEEE transactions on medical robotics and bionics, 2022-02, Vol.4 (1), p.254-265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</citedby><cites>FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</cites><orcidid>0000-0002-4778-4514 ; 0000-0002-5186-2466 ; 0000-0003-2353-7647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03527433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shachykov, Andrii</creatorcontrib><creatorcontrib>Frere, Julien</creatorcontrib><creatorcontrib>Henaff, Patrick</creatorcontrib><title>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.</description><subject>Biological system modeling</subject><subject>Biomimetics</subject><subject>Brain modeling</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>CPG</subject><subject>Gait</subject><subject>human walking</subject><subject>Integrated circuit modeling</subject><subject>Legged locomotion</subject><subject>Life Sciences</subject><subject>Muscles</subject><subject>Musculoskeletal model</subject><subject>OpenSim</subject><subject>Robot kinematics</subject><subject>Simulation</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOOYeQLwJeOVFZ06Spu2VzKGbsDFw23VIu0QzuqY2reDbm9IhXp2fw_cfOB9Ct0CmACR73K3fn6eUUDplwBkV7AKNaJyIiIXl5b98jSbeHwkhFGKSMDFCT1t76krVWldhZ_C2tpUq8brzRanx3FVt40psK7zsTqrCC2VbvPe2-sCbWlehe4OujCq9npznGO1fX3bzZbTaLN7ms1VUMJq0EU1FclAQGyWyPAPINQdqNOOUUZZzw0UsEq6B8YyAEQetTZYTkwseUsFzNkYPw91PVcq6sSfV_EinrFzOVrLfERbThDP2DYG9H9i6cV-d9q08uq4Jf3kZ3EAWZ0DTQMFAFY3zvtHm7ywQ2WuVvVbZa5VnraFzN3Ss1vqPz0QKaZyyX484cLw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shachykov, Andrii</creator><creator>Frere, Julien</creator><creator>Henaff, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4778-4514</orcidid><orcidid>https://orcid.org/0000-0002-5186-2466</orcidid><orcidid>https://orcid.org/0000-0003-2353-7647</orcidid></search><sort><creationdate>20220201</creationdate><title>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</title><author>Shachykov, Andrii ; Frere, Julien ; Henaff, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Biomimetics</topic><topic>Brain modeling</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>CPG</topic><topic>Gait</topic><topic>human walking</topic><topic>Integrated circuit modeling</topic><topic>Legged locomotion</topic><topic>Life Sciences</topic><topic>Muscles</topic><topic>Musculoskeletal model</topic><topic>OpenSim</topic><topic>Robot kinematics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shachykov, Andrii</creatorcontrib><creatorcontrib>Frere, Julien</creatorcontrib><creatorcontrib>Henaff, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shachykov, Andrii</au><au>Frere, Julien</au><au>Henaff, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Spinal Muscle Control in Human Gait Using OpenSim</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>4</volume><issue>1</issue><spage>254</spage><epage>265</epage><pages>254-265</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>This paper presents a neuro-musculoskeletal simulation approach to human gait based on an original model of central pattern generator and the muscle synergy approach. The controller, shown here, aims at simplifying movement control by reducing the number of parameters to optimize. The model of the simplified motor coordination chain was built, from the midbrain through spinal neurons to the muscles allowing of simulating some neural and muscular values of gait, hard to obtain otherwise. The work also includes a bio-inspired reflex-based balance controller designed from knowledge of spinal gait. The used anatomic musculoskeletal model has been implemented in OpenSim platform. Time simulations show the ability of the platform to be able to produce different gait patterns including nominal and disturbed. Both gaits are controlled by the same bio-inspired closed-loop CPG- and reflex-based circuitries. After 2 second standing phase, the model was able to walk for about 5 meters with 10 steps. 2 steps were disrupted in the second simulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2022.3143263</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4778-4514</orcidid><orcidid>https://orcid.org/0000-0002-5186-2466</orcidid><orcidid>https://orcid.org/0000-0003-2353-7647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-3202
ispartof IEEE transactions on medical robotics and bionics, 2022-02, Vol.4 (1), p.254-265
issn 2576-3202
2576-3202
language eng
recordid cdi_hal_primary_oai_HAL_hal_03527433v1
source IEEE Electronic Library (IEL) Journals
subjects Biological system modeling
Biomimetics
Brain modeling
Control systems design
Controllers
CPG
Gait
human walking
Integrated circuit modeling
Legged locomotion
Life Sciences
Muscles
Musculoskeletal model
OpenSim
Robot kinematics
Simulation
title Simulation of Spinal Muscle Control in Human Gait Using OpenSim
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Spinal%20Muscle%20Control%20in%20Human%20Gait%20Using%20OpenSim&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Shachykov,%20Andrii&rft.date=2022-02-01&rft.volume=4&rft.issue=1&rft.spage=254&rft.epage=265&rft.pages=254-265&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2022.3143263&rft_dat=%3Cproquest_hal_p%3E2631959128%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-2867da15fa69b911be412fe342323b4f465674e134901f6deef9b0fb64eefc4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631959128&rft_id=info:pmid/&rft_ieee_id=9681858&rfr_iscdi=true