Loading…

Uniformly valid asymptotic flow analysis in curved channels

The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM)...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2012-01, Vol.24 (1), p.013601-013601-25
Main Authors: Zagzoule, M., Cathalifaud, P., Cousteix, J., Mauss, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3
cites cdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3
container_end_page 013601-25
container_issue 1
container_start_page 013601
container_title Physics of fluids (1994)
container_volume 24
creator Zagzoule, M.
Cathalifaud, P.
Cousteix, J.
Mauss, J.
description The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number μ = δ R e 1 3 is O( 1 ) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers R e ranging from 1 to 10 4 and for constant curvatures δ = H R c ranging from 0.1 to 1, where H is the channel width and R c the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be O ( R e 1 7 ) .
doi_str_mv 10.1063/1.3673568
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03531025v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03531025v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYPvkEuHjykzu5kNwmCUIpaoeDFnpfpZpeubJOSjZW8vY0t9eRphuH7f4aPsVsOEw4KH_gEVY5SFWdsxKEo01wpdT7sOaRKIb9kVzF-AgCWQo3Y47L2rmk3oU92FHyVUOw3267pvElcaL4Tqin00cfE14n5ane2Ssya6tqGeM0uHIVob45zzJYvzx-zebp4f32bTRepwQK7lDIuqKqq0gmUVpYKsLJq_2zBXQVcKrfKQGSUo3IoS0O5FRZWTkKO5ITBMbs_9K4p6G3rN9T2uiGv59OFHm6AEjkIueN_rGmbGFvrTgEOejCkuT4a2rN3B3ZL0VBwLdXGx1NAyKxEng2dTwcuGt9R55v6_9KTTv2rUw868Qdk3nnR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniformly valid asymptotic flow analysis in curved channels</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Zagzoule, M. ; Cathalifaud, P. ; Cousteix, J. ; Mauss, J.</creator><creatorcontrib>Zagzoule, M. ; Cathalifaud, P. ; Cousteix, J. ; Mauss, J.</creatorcontrib><description>The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number μ = δ R e 1 3 is O( 1 ) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers R e ranging from 1 to 10 4 and for constant curvatures δ = H R c ranging from 0.1 to 1, where H is the channel width and R c the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be O ( R e 1 7 ) .</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3673568</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid Dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Laminar boundary layers ; Laminar flows ; Mechanics ; Physics</subject><ispartof>Physics of fluids (1994), 2012-01, Vol.24 (1), p.013601-013601-25</ispartof><rights>2012 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</citedby><cites>FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1553,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25493141$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03531025$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagzoule, M.</creatorcontrib><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><title>Uniformly valid asymptotic flow analysis in curved channels</title><title>Physics of fluids (1994)</title><description>The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number μ = δ R e 1 3 is O( 1 ) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers R e ranging from 1 to 10 4 and for constant curvatures δ = H R c ranging from 0.1 to 1, where H is the channel width and R c the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be O ( R e 1 7 ) .</description><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar boundary layers</subject><subject>Laminar flows</subject><subject>Mechanics</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFYPvkEuHjykzu5kNwmCUIpaoeDFnpfpZpeubJOSjZW8vY0t9eRphuH7f4aPsVsOEw4KH_gEVY5SFWdsxKEo01wpdT7sOaRKIb9kVzF-AgCWQo3Y47L2rmk3oU92FHyVUOw3267pvElcaL4Tqin00cfE14n5ane2Ssya6tqGeM0uHIVob45zzJYvzx-zebp4f32bTRepwQK7lDIuqKqq0gmUVpYKsLJq_2zBXQVcKrfKQGSUo3IoS0O5FRZWTkKO5ITBMbs_9K4p6G3rN9T2uiGv59OFHm6AEjkIueN_rGmbGFvrTgEOejCkuT4a2rN3B3ZL0VBwLdXGx1NAyKxEng2dTwcuGt9R55v6_9KTTv2rUw868Qdk3nnR</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zagzoule, M.</creator><creator>Cathalifaud, P.</creator><creator>Cousteix, J.</creator><creator>Mauss, J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120101</creationdate><title>Uniformly valid asymptotic flow analysis in curved channels</title><author>Zagzoule, M. ; Cathalifaud, P. ; Cousteix, J. ; Mauss, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar boundary layers</topic><topic>Laminar flows</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagzoule, M.</creatorcontrib><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagzoule, M.</au><au>Cathalifaud, P.</au><au>Cousteix, J.</au><au>Mauss, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniformly valid asymptotic flow analysis in curved channels</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>24</volume><issue>1</issue><spage>013601</spage><epage>013601-25</epage><pages>013601-013601-25</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number μ = δ R e 1 3 is O( 1 ) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers R e ranging from 1 to 10 4 and for constant curvatures δ = H R c ranging from 0.1 to 1, where H is the channel width and R c the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be O ( R e 1 7 ) .</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3673568</doi><tpages>-13599</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2012-01, Vol.24 (1), p.013601-013601-25
issn 1070-6631
1089-7666
language eng
recordid cdi_hal_primary_oai_HAL_hal_03531025v1
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid Dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Laminar boundary layers
Laminar flows
Mechanics
Physics
title Uniformly valid asymptotic flow analysis in curved channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniformly%20valid%20asymptotic%20flow%20analysis%20in%20curved%20channels&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zagzoule,%20M.&rft.date=2012-01-01&rft.volume=24&rft.issue=1&rft.spage=013601&rft.epage=013601-25&rft.pages=013601-013601-25&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3673568&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03531025v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true