Loading…
Uniformly valid asymptotic flow analysis in curved channels
The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM)...
Saved in:
Published in: | Physics of fluids (1994) 2012-01, Vol.24 (1), p.013601-013601-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3 |
container_end_page | 013601-25 |
container_issue | 1 |
container_start_page | 013601 |
container_title | Physics of fluids (1994) |
container_volume | 24 |
creator | Zagzoule, M. Cathalifaud, P. Cousteix, J. Mauss, J. |
description | The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of
the successive complementary expansions method
(SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number
μ
=
δ
R
e
1
3
is O(
1
) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers
R
e
ranging from 1 to 10
4
and for constant curvatures
δ
=
H
R
c
ranging from 0.1 to 1, where
H
is the channel width and
R
c
the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be
O
(
R
e
1
7
)
. |
doi_str_mv | 10.1063/1.3673568 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03531025v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03531025v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYPvkEuHjykzu5kNwmCUIpaoeDFnpfpZpeubJOSjZW8vY0t9eRphuH7f4aPsVsOEw4KH_gEVY5SFWdsxKEo01wpdT7sOaRKIb9kVzF-AgCWQo3Y47L2rmk3oU92FHyVUOw3267pvElcaL4Tqin00cfE14n5ane2Ssya6tqGeM0uHIVob45zzJYvzx-zebp4f32bTRepwQK7lDIuqKqq0gmUVpYKsLJq_2zBXQVcKrfKQGSUo3IoS0O5FRZWTkKO5ITBMbs_9K4p6G3rN9T2uiGv59OFHm6AEjkIueN_rGmbGFvrTgEOejCkuT4a2rN3B3ZL0VBwLdXGx1NAyKxEng2dTwcuGt9R55v6_9KTTv2rUw868Qdk3nnR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniformly valid asymptotic flow analysis in curved channels</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Zagzoule, M. ; Cathalifaud, P. ; Cousteix, J. ; Mauss, J.</creator><creatorcontrib>Zagzoule, M. ; Cathalifaud, P. ; Cousteix, J. ; Mauss, J.</creatorcontrib><description>The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of
the successive complementary expansions method
(SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number
μ
=
δ
R
e
1
3
is O(
1
) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers
R
e
ranging from 1 to 10
4
and for constant curvatures
δ
=
H
R
c
ranging from 0.1 to 1, where
H
is the channel width and
R
c
the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be
O
(
R
e
1
7
)
.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3673568</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid Dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Laminar boundary layers ; Laminar flows ; Mechanics ; Physics</subject><ispartof>Physics of fluids (1994), 2012-01, Vol.24 (1), p.013601-013601-25</ispartof><rights>2012 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</citedby><cites>FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1553,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25493141$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03531025$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagzoule, M.</creatorcontrib><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><title>Uniformly valid asymptotic flow analysis in curved channels</title><title>Physics of fluids (1994)</title><description>The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of
the successive complementary expansions method
(SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number
μ
=
δ
R
e
1
3
is O(
1
) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers
R
e
ranging from 1 to 10
4
and for constant curvatures
δ
=
H
R
c
ranging from 0.1 to 1, where
H
is the channel width and
R
c
the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be
O
(
R
e
1
7
)
.</description><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar boundary layers</subject><subject>Laminar flows</subject><subject>Mechanics</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFYPvkEuHjykzu5kNwmCUIpaoeDFnpfpZpeubJOSjZW8vY0t9eRphuH7f4aPsVsOEw4KH_gEVY5SFWdsxKEo01wpdT7sOaRKIb9kVzF-AgCWQo3Y47L2rmk3oU92FHyVUOw3267pvElcaL4Tqin00cfE14n5ane2Ssya6tqGeM0uHIVob45zzJYvzx-zebp4f32bTRepwQK7lDIuqKqq0gmUVpYKsLJq_2zBXQVcKrfKQGSUo3IoS0O5FRZWTkKO5ITBMbs_9K4p6G3rN9T2uiGv59OFHm6AEjkIueN_rGmbGFvrTgEOejCkuT4a2rN3B3ZL0VBwLdXGx1NAyKxEng2dTwcuGt9R55v6_9KTTv2rUw868Qdk3nnR</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zagzoule, M.</creator><creator>Cathalifaud, P.</creator><creator>Cousteix, J.</creator><creator>Mauss, J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120101</creationdate><title>Uniformly valid asymptotic flow analysis in curved channels</title><author>Zagzoule, M. ; Cathalifaud, P. ; Cousteix, J. ; Mauss, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar boundary layers</topic><topic>Laminar flows</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagzoule, M.</creatorcontrib><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagzoule, M.</au><au>Cathalifaud, P.</au><au>Cousteix, J.</au><au>Mauss, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniformly valid asymptotic flow analysis in curved channels</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>24</volume><issue>1</issue><spage>013601</spage><epage>013601-25</epage><pages>013601-013601-25</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of
the successive complementary expansions method
(SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number
μ
=
δ
R
e
1
3
is O(
1
) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers
R
e
ranging from 1 to 10
4
and for constant curvatures
δ
=
H
R
c
ranging from 0.1 to 1, where
H
is the channel width and
R
c
the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be
O
(
R
e
1
7
)
.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3673568</doi><tpages>-13599</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2012-01, Vol.24 (1), p.013601-013601-25 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03531025v1 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid Dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Laminar boundary layers Laminar flows Mechanics Physics |
title | Uniformly valid asymptotic flow analysis in curved channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniformly%20valid%20asymptotic%20flow%20analysis%20in%20curved%20channels&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zagzoule,%20M.&rft.date=2012-01-01&rft.volume=24&rft.issue=1&rft.spage=013601&rft.epage=013601-25&rft.pages=013601-013601-25&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3673568&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03531025v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-a412addd9f235e59603de606381fd0156fb4024a736f359ca7e2e0bf5073af2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |