Loading…
Convexity of complements of limit sets for holomorphic foliations on surfaces
Let F be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of F has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representati...
Saved in:
Published in: | Mathematische annalen 2024-01, Vol.388 (3), p.2727-2753 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3 |
container_end_page | 2753 |
container_issue | 3 |
container_start_page | 2727 |
container_title | Mathematische annalen |
container_volume | 388 |
creator | Deroin, Bertrand Dupont, Christophe Kleptsyn, Victor |
description | Let
F
be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of
F
has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of
F
near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion. |
doi_str_mv | 10.1007/s00208-023-02590-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03551852v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926609281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKf_gKeCJw_VL8nSpscx1AkTL3oObfrFZbRNTbqh_72pFb15COElv_d4PEIuKdxQgPw2ADCQKTAejyggpUdkRhecpVRCfkxm8V-kQnJ6Ss5C2AEABxAz8rRy3QE_7PCZOJNo1_YNttgNYZSNbe2QBIzKOJ9sXeNa5_ut1VE3thys6yLYJWHvTakxnJMTUzYBL37uOXm9v3tZrdPN88PjarlJNV_IIXbKWFZUsZLOc2QV1jXLkdMqo6bGvOJMYiW50AsuKiNLQJ3rEmumgWcVN3xOrqfcbdmo3tu29J_KlVatlxs1vgEXgkrBDjSyVxPbe_e-xzCondv7LtZTrGBZBgWTI8UmSnsXgkfzG0tBjROraWIVJ1bfE6vRxCdTiHD3hv4v-h_XF2ujfpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926609281</pqid></control><display><type>article</type><title>Convexity of complements of limit sets for holomorphic foliations on surfaces</title><source>Springer Nature</source><creator>Deroin, Bertrand ; Dupont, Christophe ; Kleptsyn, Victor</creator><creatorcontrib>Deroin, Bertrand ; Dupont, Christophe ; Kleptsyn, Victor</creatorcontrib><description>Let
F
be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of
F
has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of
F
near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02590-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Variables ; Convexity ; Dynamical Systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2024-01, Vol.388 (3), p.2727-2753</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3</cites><orcidid>0000-0002-8533-3124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03551852$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Deroin, Bertrand</creatorcontrib><creatorcontrib>Dupont, Christophe</creatorcontrib><creatorcontrib>Kleptsyn, Victor</creatorcontrib><title>Convexity of complements of limit sets for holomorphic foliations on surfaces</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Let
F
be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of
F
has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of
F
near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.</description><subject>Complex Variables</subject><subject>Convexity</subject><subject>Dynamical Systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYMoOKf_gKeCJw_VL8nSpscx1AkTL3oObfrFZbRNTbqh_72pFb15COElv_d4PEIuKdxQgPw2ADCQKTAejyggpUdkRhecpVRCfkxm8V-kQnJ6Ss5C2AEABxAz8rRy3QE_7PCZOJNo1_YNttgNYZSNbe2QBIzKOJ9sXeNa5_ut1VE3thys6yLYJWHvTakxnJMTUzYBL37uOXm9v3tZrdPN88PjarlJNV_IIXbKWFZUsZLOc2QV1jXLkdMqo6bGvOJMYiW50AsuKiNLQJ3rEmumgWcVN3xOrqfcbdmo3tu29J_KlVatlxs1vgEXgkrBDjSyVxPbe_e-xzCondv7LtZTrGBZBgWTI8UmSnsXgkfzG0tBjROraWIVJ1bfE6vRxCdTiHD3hv4v-h_XF2ujfpY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Deroin, Bertrand</creator><creator>Dupont, Christophe</creator><creator>Kleptsyn, Victor</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8533-3124</orcidid></search><sort><creationdate>20240101</creationdate><title>Convexity of complements of limit sets for holomorphic foliations on surfaces</title><author>Deroin, Bertrand ; Dupont, Christophe ; Kleptsyn, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex Variables</topic><topic>Convexity</topic><topic>Dynamical Systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deroin, Bertrand</creatorcontrib><creatorcontrib>Dupont, Christophe</creatorcontrib><creatorcontrib>Kleptsyn, Victor</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deroin, Bertrand</au><au>Dupont, Christophe</au><au>Kleptsyn, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convexity of complements of limit sets for holomorphic foliations on surfaces</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>388</volume><issue>3</issue><spage>2727</spage><epage>2753</epage><pages>2727-2753</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Let
F
be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of
F
has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of
F
near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02590-1</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8533-3124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2024-01, Vol.388 (3), p.2727-2753 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03551852v1 |
source | Springer Nature |
subjects | Complex Variables Convexity Dynamical Systems Mathematical analysis Mathematics Mathematics and Statistics |
title | Convexity of complements of limit sets for holomorphic foliations on surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convexity%20of%20complements%20of%20limit%20sets%20for%20holomorphic%20foliations%20on%20surfaces&rft.jtitle=Mathematische%20annalen&rft.au=Deroin,%20Bertrand&rft.date=2024-01-01&rft.volume=388&rft.issue=3&rft.spage=2727&rft.epage=2753&rft.pages=2727-2753&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02590-1&rft_dat=%3Cproquest_hal_p%3E2926609281%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926609281&rft_id=info:pmid/&rfr_iscdi=true |