Loading…

Convexity of complements of limit sets for holomorphic foliations on surfaces

Let F be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of F has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representati...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2024-01, Vol.388 (3), p.2727-2753
Main Authors: Deroin, Bertrand, Dupont, Christophe, Kleptsyn, Victor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3
container_end_page 2753
container_issue 3
container_start_page 2727
container_title Mathematische annalen
container_volume 388
creator Deroin, Bertrand
Dupont, Christophe
Kleptsyn, Victor
description Let F be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of F has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of F near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.
doi_str_mv 10.1007/s00208-023-02590-1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03551852v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926609281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKf_gKeCJw_VL8nSpscx1AkTL3oObfrFZbRNTbqh_72pFb15COElv_d4PEIuKdxQgPw2ADCQKTAejyggpUdkRhecpVRCfkxm8V-kQnJ6Ss5C2AEABxAz8rRy3QE_7PCZOJNo1_YNttgNYZSNbe2QBIzKOJ9sXeNa5_ut1VE3thys6yLYJWHvTakxnJMTUzYBL37uOXm9v3tZrdPN88PjarlJNV_IIXbKWFZUsZLOc2QV1jXLkdMqo6bGvOJMYiW50AsuKiNLQJ3rEmumgWcVN3xOrqfcbdmo3tu29J_KlVatlxs1vgEXgkrBDjSyVxPbe_e-xzCondv7LtZTrGBZBgWTI8UmSnsXgkfzG0tBjROraWIVJ1bfE6vRxCdTiHD3hv4v-h_XF2ujfpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926609281</pqid></control><display><type>article</type><title>Convexity of complements of limit sets for holomorphic foliations on surfaces</title><source>Springer Nature</source><creator>Deroin, Bertrand ; Dupont, Christophe ; Kleptsyn, Victor</creator><creatorcontrib>Deroin, Bertrand ; Dupont, Christophe ; Kleptsyn, Victor</creatorcontrib><description>Let F be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of F has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of F near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02590-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Variables ; Convexity ; Dynamical Systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2024-01, Vol.388 (3), p.2727-2753</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3</cites><orcidid>0000-0002-8533-3124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03551852$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Deroin, Bertrand</creatorcontrib><creatorcontrib>Dupont, Christophe</creatorcontrib><creatorcontrib>Kleptsyn, Victor</creatorcontrib><title>Convexity of complements of limit sets for holomorphic foliations on surfaces</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Let F be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of F has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of F near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.</description><subject>Complex Variables</subject><subject>Convexity</subject><subject>Dynamical Systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYMoOKf_gKeCJw_VL8nSpscx1AkTL3oObfrFZbRNTbqh_72pFb15COElv_d4PEIuKdxQgPw2ADCQKTAejyggpUdkRhecpVRCfkxm8V-kQnJ6Ss5C2AEABxAz8rRy3QE_7PCZOJNo1_YNttgNYZSNbe2QBIzKOJ9sXeNa5_ut1VE3thys6yLYJWHvTakxnJMTUzYBL37uOXm9v3tZrdPN88PjarlJNV_IIXbKWFZUsZLOc2QV1jXLkdMqo6bGvOJMYiW50AsuKiNLQJ3rEmumgWcVN3xOrqfcbdmo3tu29J_KlVatlxs1vgEXgkrBDjSyVxPbe_e-xzCondv7LtZTrGBZBgWTI8UmSnsXgkfzG0tBjROraWIVJ1bfE6vRxCdTiHD3hv4v-h_XF2ujfpY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Deroin, Bertrand</creator><creator>Dupont, Christophe</creator><creator>Kleptsyn, Victor</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8533-3124</orcidid></search><sort><creationdate>20240101</creationdate><title>Convexity of complements of limit sets for holomorphic foliations on surfaces</title><author>Deroin, Bertrand ; Dupont, Christophe ; Kleptsyn, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex Variables</topic><topic>Convexity</topic><topic>Dynamical Systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deroin, Bertrand</creatorcontrib><creatorcontrib>Dupont, Christophe</creatorcontrib><creatorcontrib>Kleptsyn, Victor</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deroin, Bertrand</au><au>Dupont, Christophe</au><au>Kleptsyn, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convexity of complements of limit sets for holomorphic foliations on surfaces</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>388</volume><issue>3</issue><spage>2727</spage><epage>2753</epage><pages>2727-2753</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Let F be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of F has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of F near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02590-1</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8533-3124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2024-01, Vol.388 (3), p.2727-2753
issn 0025-5831
1432-1807
language eng
recordid cdi_hal_primary_oai_HAL_hal_03551852v1
source Springer Nature
subjects Complex Variables
Convexity
Dynamical Systems
Mathematical analysis
Mathematics
Mathematics and Statistics
title Convexity of complements of limit sets for holomorphic foliations on surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convexity%20of%20complements%20of%20limit%20sets%20for%20holomorphic%20foliations%20on%20surfaces&rft.jtitle=Mathematische%20annalen&rft.au=Deroin,%20Bertrand&rft.date=2024-01-01&rft.volume=388&rft.issue=3&rft.spage=2727&rft.epage=2753&rft.pages=2727-2753&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02590-1&rft_dat=%3Cproquest_hal_p%3E2926609281%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-186269b025c77e2bedd27e31b61fde7b328eb835c435bf8a0ec7caed2c036b3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926609281&rft_id=info:pmid/&rfr_iscdi=true