Loading…

Simulating wildfire patterns using a small-world network model

This paper presents the development and validation results of a weighted small-world network model designed to simulate fire patterns in real heterogeneous landscapes. Fire spread is simulated on a gridded landscape, a mosaic in which each cell represents an area of the land surface. In this model,...

Full description

Saved in:
Bibliographic Details
Published in:Ecological modelling 2010-06, Vol.221 (11), p.1463-1471
Main Authors: Adou, J.K., Billaud, Y., Brou, D.A., Clerc, J.-P., Consalvi, J.-L., Fuentes, A., Kaiss, A., Nmira, F., Porterie, B., Zekri, L., Zekri, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the development and validation results of a weighted small-world network model designed to simulate fire patterns in real heterogeneous landscapes. Fire spread is simulated on a gridded landscape, a mosaic in which each cell represents an area of the land surface. In this model, the interaction between burning and non-burning cells (here, due to flame radiation) may extend well beyond nearest neighbors, and depends on local conditions of wind, topography, and vegetation. An approach based on the coupling of the solid flame model with the Monte Carlo method is used to predict the radiative heat flux from the flame generated by the burning of each combustible cell to its neighbors. The weighting procedure takes into account latency (a combustible cell will only ignite when it has accumulated enough energy along time) and flaming persistence of burning cells. The model is applied to very different fire scenarios: a historical Mediterranean fire that occurred in southeastern France in 2005 and experimental fires conducted in arid savanna fuels in South Africa in 1992. Model results are found to be in agreement with real fire patterns, in terms both of rate of spread, and of the area and shape of the burn. This work also shows that the fractal properties of fire patterns predicted by the model are similar to those observed from satellite images of three other Mediterranean fire scars.
ISSN:0304-3800
1872-7026
DOI:10.1016/j.ecolmodel.2010.02.015