Loading…
The miniJPAS survey quasar selection – I. Mock catalogues for classification
ABSTRACT In this series of papers, we employ several machine learning (ML) methods to classify the point-like sources from the miniJPAS catalogue, and identify quasar candidates. Since no representative sample of spectroscopically confirmed sources exists at present to train these ML algorithms, we...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2023-02, Vol.520 (3), p.3476-3493 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
In this series of papers, we employ several machine learning (ML) methods to classify the point-like sources from the miniJPAS catalogue, and identify quasar candidates. Since no representative sample of spectroscopically confirmed sources exists at present to train these ML algorithms, we rely on mock catalogues. In this first paper, we develop a pipeline to compute synthetic photometry of quasars, galaxies, and stars using spectra of objects targeted as quasars in the Sloan Digital Sky Survey. To match the same depths and signal-to-noise ratio distributions in all bands expected for miniJPAS point sources in the range 17.5 ≤ r < 24, we augment our sample of available spectra by shifting the original r-band magnitude distributions towards the faint end, ensure that the relative incidence rates of the different objects are distributed according to their respective luminosity functions, and perform a thorough modelling of the noise distribution in each filter, by sampling the flux variance either from Gaussian realizations with given widths, or from combinations of Gaussian functions. Finally, we also add in the mocks the patterns of non-detections which are present in all real observations. Although the mock catalogues presented in this work are a first step towards simulated data sets that match the properties of the miniJPAS observations, these mocks can be adapted to serve the purposes of other photometric surveys. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stac2962 |