Loading…

Europium(III) Complexes Containing Organosilyldipyridine Ligands Grafted on Silica Nanoparticles

This work focuses on the grafting of transition metal complexes on silica surface nanoparticles. Nanoscale silica particles in aqueous sols are used as starting silicated materials. We have undertaken the synthesis of europium(III) complexes containing organosilyldipyridine ligands, (EtO)3Si(CH2)3NH...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2008-06, Vol.24 (12), p.6208-6214
Main Authors: Cousinié, Sandra, Gressier, Marie, Reber, Christian, Dexpert-Ghys, Jeannette, Menu, Marie-Joëlle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work focuses on the grafting of transition metal complexes on silica surface nanoparticles. Nanoscale silica particles in aqueous sols are used as starting silicated materials. We have undertaken the synthesis of europium(III) complexes containing organosilyldipyridine ligands, (EtO)3Si(CH2)3NHCH2-bipy (1) and (EtO)(CH3)2Si(CH2)3NHCH2-bipy (2), in view of a direct grafting reaction on silica nanoparticles. Reaction of one molar equivalent of 1 and 2 with Eu(tmhd)3 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato), as precursor, leads to octacoordinated silylated europium(III) complexes [Eu(tmhd)3(1)] (3) and [Eu(tmhd)3(2)] (4) as white solids in 34−54% yields. Europium complexes were characterized by elemental analysis, mass spectrometry, FT-IR, UV, and luminescence spectroscopies. These new complexes are reacting in a 1:10 (v/v) water and ethanol mixture with silica nanoparticles colloidal sol. Elemental analysis and thermogravimetric data indicated grafting ratios of 0.41 and 0.26 mmol of europium(III) complexes per gram of silica. Functionalized silica nanoparticles were characterized by DRIFT spectroscopy and TEM microscopy. The first analysis shows that the chemical integrity of the complexes is retained on the silica surface together with the size and the monodispersity of the nanoscale particles. As expected for europium(III) complexes, luminescence is observed under UV irradiation. Emission and excitation spectra indicate that the metal coordination environment is not modified on the silica surface. Moreover, the sharpness of the luminescence bands and the strong antenna effect are maintained when complexes are covalently bonded to silica. New luminescent europium(III) complexes grafted on silica nanoparticles are therefore obtained from our approach.
ISSN:0743-7463
1520-5827
DOI:10.1021/la7035983