Loading…
MWTmat—application of multiscale wavelet tomography on potential fields
Wavelet analysis is a well-known technique in the sciences to extract essential information from measured signals. Based on the theory developed by previous studies on the Poisson kernel family, this study presents an open source code, which allows for the determination of the depth of the source re...
Saved in:
Published in: | Computers & geosciences 2011-11, Vol.37 (11), p.1825-1835 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wavelet analysis is a well-known technique in the sciences to extract essential information from measured signals. Based on the theory developed by previous studies on the Poisson kernel family, this study presents an open source code, which allows for the determination of the depth of the source responsible for the measured potential field. MWTmat, based on the Matlab platform, does not require the wavelet tool box, is easy to use, and allows the user to select the analyzing wavelets and parameters. The program offers a panel of 10 different wavelets based on the Poisson kernel family and the choice between a fully manual and a semiautomatic mode for selection of lines of extrema. The general equations for both horizontal and vertical derivative wavelets are presented in this study, allowing the user to add new wavelets. Continuous wavelet analyses can be used to efficiently analyze electrical, magnetic, and gravity signals; examples are presented here. The MWTmat code and the multiscale wavelet tomography approach are an efficient method for investigating spatial and temporal changes of sources generating potential field signals. |
---|---|
ISSN: | 0098-3004 1873-7803 |
DOI: | 10.1016/j.cageo.2011.04.005 |