Loading…

Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases

There is an ongoing debate about the importance and the extent to which psychological and psychopathological factors, adverse childhood experiences, and socio-demographic characteristics are associated with the development of certain types of rheumatic disease. With the aim of contributing to knowle...

Full description

Saved in:
Bibliographic Details
Published in:Rheumatology international 2022-06, Vol.42 (6), p.1053-1062
Main Authors: Vera Cruz, Germano, Bucourt, Emilie, Réveillère, Christian, Martaillé, Virginie, Joncker-Vannier, Isabelle, Goupille, Philippe, Mulleman, Denis, Courtois, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93
cites cdi_FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93
container_end_page 1062
container_issue 6
container_start_page 1053
container_title Rheumatology international
container_volume 42
creator Vera Cruz, Germano
Bucourt, Emilie
Réveillère, Christian
Martaillé, Virginie
Joncker-Vannier, Isabelle
Goupille, Philippe
Mulleman, Denis
Courtois, Robert
description There is an ongoing debate about the importance and the extent to which psychological and psychopathological factors, adverse childhood experiences, and socio-demographic characteristics are associated with the development of certain types of rheumatic disease. With the aim of contributing to knowledge on the subject, the present study uses machine learning modeling to determine the importance of 20 psychological and social variables in predicting two classes of rheumatic disease: inflammatory rheumatic and musculoskeletal diseases (RMD) (rheumatoid arthritis = RA, spondyloarthritis = SA, and Sjögren’s syndrome = SS) versus non-inflammatory RMD, namely fibromyalgia = FM). A total of 165 French women with FM, RA, SA, and SS completed an inventory of personality traits, a psychopathology diagnosis questionnaire, and a fatigue/pain questionnaire. They also answered questions about adverse childhood experiences and socio-demographic characteristics. Random forest and logistic regression machine learning algorithms were used for data analysis. The main findings suggest that mistreatment during childhood ((MDA = 10.22), the agreeableness personality trait (MDA = 3.39), and somatic disorder (MDA = 3.25) are the main psychological and social predictors of the type of rheumatic disease diagnosed. The first two predictors (OR = 18.92 and OR = 6.11) are also more strongly associated with FM than with RA-SA-SS. Overall, adverse childhood experiences seem relatively more important than personality traits, psychopathological or demographic variables. The results of this study suggest that traumatic childhood experiences may lead to psychopathological disorders in adulthood, which in turn might underlie, at least in part, the development of FM. Since there are no imaging or biological markers of FM, the present findings contribute to the scientific literature offering information to help patients with FM understand their pathology. They may also provide physicians with more diagnostic information.
doi_str_mv 10.1007/s00296-021-04916-1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03603309v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540729280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEoqXwAhyQJS5wCIztrL05VhVQpEVcQOJmOc541yWJgydZqS_Ds-JsSkEckA8e2Z-_Gesviucc3nAA_ZYARK1KELyEquaq5A-Kc15JXXIF3x7-VZ8VT4huALhWCh4XZ7LiYpPXefHzk3WHMCDr0KYhDHuW8Ii2IzYdkPWRJhb6MabJDhMb6dYdYhf3wdmO2aFlFF3I5dGmYJsOiY0J2-CmRbQI2uA9JhymhWqD3Q-RArHoWTrg3NspuJOnn8nNXaTv2OF0QgktIT0tHvk8DD672y-Kr-_ffbm6LnefP3y8utyVTsp6Kjdi26it20C79dBa1Xohay811LqWVnj0jW4y5L3Vzmm0VkuFKIC3rtnaWl4Ur1fvwXZmTKG36dZEG8z15c4sZyAVSAn1kWf21cqOKf6YkSbTB3LYdXbAOJMRmwq0qMUWMvryH_QmzmnIPzFCKa2EkJXOlFgplyJRQn8_AQezJG3WpE1O2pySNssUL-7Uc9Nje__kd7QZkCtA-WrYY_rT-z_aX5KAt7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667622347</pqid></control><display><type>article</type><title>Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases</title><source>Springer Nature</source><creator>Vera Cruz, Germano ; Bucourt, Emilie ; Réveillère, Christian ; Martaillé, Virginie ; Joncker-Vannier, Isabelle ; Goupille, Philippe ; Mulleman, Denis ; Courtois, Robert</creator><creatorcontrib>Vera Cruz, Germano ; Bucourt, Emilie ; Réveillère, Christian ; Martaillé, Virginie ; Joncker-Vannier, Isabelle ; Goupille, Philippe ; Mulleman, Denis ; Courtois, Robert</creatorcontrib><description>There is an ongoing debate about the importance and the extent to which psychological and psychopathological factors, adverse childhood experiences, and socio-demographic characteristics are associated with the development of certain types of rheumatic disease. With the aim of contributing to knowledge on the subject, the present study uses machine learning modeling to determine the importance of 20 psychological and social variables in predicting two classes of rheumatic disease: inflammatory rheumatic and musculoskeletal diseases (RMD) (rheumatoid arthritis = RA, spondyloarthritis = SA, and Sjögren’s syndrome = SS) versus non-inflammatory RMD, namely fibromyalgia = FM). A total of 165 French women with FM, RA, SA, and SS completed an inventory of personality traits, a psychopathology diagnosis questionnaire, and a fatigue/pain questionnaire. They also answered questions about adverse childhood experiences and socio-demographic characteristics. Random forest and logistic regression machine learning algorithms were used for data analysis. The main findings suggest that mistreatment during childhood ((MDA = 10.22), the agreeableness personality trait (MDA = 3.39), and somatic disorder (MDA = 3.25) are the main psychological and social predictors of the type of rheumatic disease diagnosed. The first two predictors (OR = 18.92 and OR = 6.11) are also more strongly associated with FM than with RA-SA-SS. Overall, adverse childhood experiences seem relatively more important than personality traits, psychopathological or demographic variables. The results of this study suggest that traumatic childhood experiences may lead to psychopathological disorders in adulthood, which in turn might underlie, at least in part, the development of FM. Since there are no imaging or biological markers of FM, the present findings contribute to the scientific literature offering information to help patients with FM understand their pathology. They may also provide physicians with more diagnostic information.</description><identifier>ISSN: 1437-160X</identifier><identifier>ISSN: 0172-8172</identifier><identifier>EISSN: 1437-160X</identifier><identifier>DOI: 10.1007/s00296-021-04916-1</identifier><identifier>PMID: 34125252</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adverse childhood experiences ; Human health and pathology ; Humanities and Social Sciences ; Life Sciences ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Musculoskeletal diseases ; Observational Research ; Personality ; Personality traits ; Psychology ; Questionnaires ; Rheumatic diseases ; Rheumatology ; Santé publique et épidémiologie ; Sociodemographics</subject><ispartof>Rheumatology international, 2022-06, Vol.42 (6), p.1053-1062</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93</citedby><cites>FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93</cites><orcidid>0000-0002-3557-5264 ; 0000-0002-8605-1567 ; 0000-0002-0667-1775 ; 0000-0003-4089-7513 ; 0000-0002-8005-023X ; 0000-0002-8297-6933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34125252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03603309$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vera Cruz, Germano</creatorcontrib><creatorcontrib>Bucourt, Emilie</creatorcontrib><creatorcontrib>Réveillère, Christian</creatorcontrib><creatorcontrib>Martaillé, Virginie</creatorcontrib><creatorcontrib>Joncker-Vannier, Isabelle</creatorcontrib><creatorcontrib>Goupille, Philippe</creatorcontrib><creatorcontrib>Mulleman, Denis</creatorcontrib><creatorcontrib>Courtois, Robert</creatorcontrib><title>Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases</title><title>Rheumatology international</title><addtitle>Rheumatol Int</addtitle><addtitle>Rheumatol Int</addtitle><description>There is an ongoing debate about the importance and the extent to which psychological and psychopathological factors, adverse childhood experiences, and socio-demographic characteristics are associated with the development of certain types of rheumatic disease. With the aim of contributing to knowledge on the subject, the present study uses machine learning modeling to determine the importance of 20 psychological and social variables in predicting two classes of rheumatic disease: inflammatory rheumatic and musculoskeletal diseases (RMD) (rheumatoid arthritis = RA, spondyloarthritis = SA, and Sjögren’s syndrome = SS) versus non-inflammatory RMD, namely fibromyalgia = FM). A total of 165 French women with FM, RA, SA, and SS completed an inventory of personality traits, a psychopathology diagnosis questionnaire, and a fatigue/pain questionnaire. They also answered questions about adverse childhood experiences and socio-demographic characteristics. Random forest and logistic regression machine learning algorithms were used for data analysis. The main findings suggest that mistreatment during childhood ((MDA = 10.22), the agreeableness personality trait (MDA = 3.39), and somatic disorder (MDA = 3.25) are the main psychological and social predictors of the type of rheumatic disease diagnosed. The first two predictors (OR = 18.92 and OR = 6.11) are also more strongly associated with FM than with RA-SA-SS. Overall, adverse childhood experiences seem relatively more important than personality traits, psychopathological or demographic variables. The results of this study suggest that traumatic childhood experiences may lead to psychopathological disorders in adulthood, which in turn might underlie, at least in part, the development of FM. Since there are no imaging or biological markers of FM, the present findings contribute to the scientific literature offering information to help patients with FM understand their pathology. They may also provide physicians with more diagnostic information.</description><subject>Adverse childhood experiences</subject><subject>Human health and pathology</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Musculoskeletal diseases</subject><subject>Observational Research</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Psychology</subject><subject>Questionnaires</subject><subject>Rheumatic diseases</subject><subject>Rheumatology</subject><subject>Santé publique et épidémiologie</subject><subject>Sociodemographics</subject><issn>1437-160X</issn><issn>0172-8172</issn><issn>1437-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiMEoqXwAhyQJS5wCIztrL05VhVQpEVcQOJmOc541yWJgydZqS_Ds-JsSkEckA8e2Z-_Gesviucc3nAA_ZYARK1KELyEquaq5A-Kc15JXXIF3x7-VZ8VT4huALhWCh4XZ7LiYpPXefHzk3WHMCDr0KYhDHuW8Ii2IzYdkPWRJhb6MabJDhMb6dYdYhf3wdmO2aFlFF3I5dGmYJsOiY0J2-CmRbQI2uA9JhymhWqD3Q-RArHoWTrg3NspuJOnn8nNXaTv2OF0QgktIT0tHvk8DD672y-Kr-_ffbm6LnefP3y8utyVTsp6Kjdi26it20C79dBa1Xohay811LqWVnj0jW4y5L3Vzmm0VkuFKIC3rtnaWl4Ur1fvwXZmTKG36dZEG8z15c4sZyAVSAn1kWf21cqOKf6YkSbTB3LYdXbAOJMRmwq0qMUWMvryH_QmzmnIPzFCKa2EkJXOlFgplyJRQn8_AQezJG3WpE1O2pySNssUL-7Uc9Nje__kd7QZkCtA-WrYY_rT-z_aX5KAt7Q</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Vera Cruz, Germano</creator><creator>Bucourt, Emilie</creator><creator>Réveillère, Christian</creator><creator>Martaillé, Virginie</creator><creator>Joncker-Vannier, Isabelle</creator><creator>Goupille, Philippe</creator><creator>Mulleman, Denis</creator><creator>Courtois, Robert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-3557-5264</orcidid><orcidid>https://orcid.org/0000-0002-8605-1567</orcidid><orcidid>https://orcid.org/0000-0002-0667-1775</orcidid><orcidid>https://orcid.org/0000-0003-4089-7513</orcidid><orcidid>https://orcid.org/0000-0002-8005-023X</orcidid><orcidid>https://orcid.org/0000-0002-8297-6933</orcidid></search><sort><creationdate>20220601</creationdate><title>Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases</title><author>Vera Cruz, Germano ; Bucourt, Emilie ; Réveillère, Christian ; Martaillé, Virginie ; Joncker-Vannier, Isabelle ; Goupille, Philippe ; Mulleman, Denis ; Courtois, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adverse childhood experiences</topic><topic>Human health and pathology</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Musculoskeletal diseases</topic><topic>Observational Research</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Psychology</topic><topic>Questionnaires</topic><topic>Rheumatic diseases</topic><topic>Rheumatology</topic><topic>Santé publique et épidémiologie</topic><topic>Sociodemographics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera Cruz, Germano</creatorcontrib><creatorcontrib>Bucourt, Emilie</creatorcontrib><creatorcontrib>Réveillère, Christian</creatorcontrib><creatorcontrib>Martaillé, Virginie</creatorcontrib><creatorcontrib>Joncker-Vannier, Isabelle</creatorcontrib><creatorcontrib>Goupille, Philippe</creatorcontrib><creatorcontrib>Mulleman, Denis</creatorcontrib><creatorcontrib>Courtois, Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Rheumatology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera Cruz, Germano</au><au>Bucourt, Emilie</au><au>Réveillère, Christian</au><au>Martaillé, Virginie</au><au>Joncker-Vannier, Isabelle</au><au>Goupille, Philippe</au><au>Mulleman, Denis</au><au>Courtois, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases</atitle><jtitle>Rheumatology international</jtitle><stitle>Rheumatol Int</stitle><addtitle>Rheumatol Int</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>42</volume><issue>6</issue><spage>1053</spage><epage>1062</epage><pages>1053-1062</pages><issn>1437-160X</issn><issn>0172-8172</issn><eissn>1437-160X</eissn><abstract>There is an ongoing debate about the importance and the extent to which psychological and psychopathological factors, adverse childhood experiences, and socio-demographic characteristics are associated with the development of certain types of rheumatic disease. With the aim of contributing to knowledge on the subject, the present study uses machine learning modeling to determine the importance of 20 psychological and social variables in predicting two classes of rheumatic disease: inflammatory rheumatic and musculoskeletal diseases (RMD) (rheumatoid arthritis = RA, spondyloarthritis = SA, and Sjögren’s syndrome = SS) versus non-inflammatory RMD, namely fibromyalgia = FM). A total of 165 French women with FM, RA, SA, and SS completed an inventory of personality traits, a psychopathology diagnosis questionnaire, and a fatigue/pain questionnaire. They also answered questions about adverse childhood experiences and socio-demographic characteristics. Random forest and logistic regression machine learning algorithms were used for data analysis. The main findings suggest that mistreatment during childhood ((MDA = 10.22), the agreeableness personality trait (MDA = 3.39), and somatic disorder (MDA = 3.25) are the main psychological and social predictors of the type of rheumatic disease diagnosed. The first two predictors (OR = 18.92 and OR = 6.11) are also more strongly associated with FM than with RA-SA-SS. Overall, adverse childhood experiences seem relatively more important than personality traits, psychopathological or demographic variables. The results of this study suggest that traumatic childhood experiences may lead to psychopathological disorders in adulthood, which in turn might underlie, at least in part, the development of FM. Since there are no imaging or biological markers of FM, the present findings contribute to the scientific literature offering information to help patients with FM understand their pathology. They may also provide physicians with more diagnostic information.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34125252</pmid><doi>10.1007/s00296-021-04916-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3557-5264</orcidid><orcidid>https://orcid.org/0000-0002-8605-1567</orcidid><orcidid>https://orcid.org/0000-0002-0667-1775</orcidid><orcidid>https://orcid.org/0000-0003-4089-7513</orcidid><orcidid>https://orcid.org/0000-0002-8005-023X</orcidid><orcidid>https://orcid.org/0000-0002-8297-6933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1437-160X
ispartof Rheumatology international, 2022-06, Vol.42 (6), p.1053-1062
issn 1437-160X
0172-8172
1437-160X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03603309v1
source Springer Nature
subjects Adverse childhood experiences
Human health and pathology
Humanities and Social Sciences
Life Sciences
Machine learning
Medicine
Medicine & Public Health
Musculoskeletal diseases
Observational Research
Personality
Personality traits
Psychology
Questionnaires
Rheumatic diseases
Rheumatology
Santé publique et épidémiologie
Sociodemographics
title Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reveals%20the%20most%20important%20psychological%20and%20social%20variables%20predicting%20the%20differential%20diagnosis%20of%20rheumatic%20and%20musculoskeletal%20diseases&rft.jtitle=Rheumatology%20international&rft.au=Vera%20Cruz,%20Germano&rft.date=2022-06-01&rft.volume=42&rft.issue=6&rft.spage=1053&rft.epage=1062&rft.pages=1053-1062&rft.issn=1437-160X&rft.eissn=1437-160X&rft_id=info:doi/10.1007/s00296-021-04916-1&rft_dat=%3Cproquest_hal_p%3E2540729280%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-528b68c50d8f0da6df239f3709793a2fefb7b528ffa7cc7eaa736ee201dcb8a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667622347&rft_id=info:pmid/34125252&rfr_iscdi=true