Loading…
Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys
A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) fra...
Saved in:
Published in: | The journal of physical chemistry letters 2018-08, Vol.9 (16), p.4738-4745 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3 |
container_end_page | 4745 |
container_issue | 16 |
container_start_page | 4738 |
container_title | The journal of physical chemistry letters |
container_volume | 9 |
creator | Fu, Haohao Zhang, Hong Chen, Haochuan Shao, Xueguang Chipot, Christophe Cai, Wensheng |
description | A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) framework. Numerical applications on both toy models and nontrivial examples indicate that meta-eABF explores the free-energy surface significantly faster than either eABF or metadynamics (MtD) alone, without the need to stratify the reaction pathway. In some favorable cases, meta-eABF can be as much as five times faster than other importance-sampling algorithms. Many of the shortcomings inherent to eABF and MtD, like kinetic trapping in regions of configurational space already adequately sampled, the requirement of prior knowledge of the free-energy landscape to set up the simulation, are readily eliminated in meta-eABF. Meta-eABF, therefore, represents an appealing solution for a broad range of applications, especially when both eABF and MtD fail to achieve the desired result. |
doi_str_mv | 10.1021/acs.jpclett.8b01994 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03603345v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083713466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMofkx_gSC9VLDbSZO2qXdTNhUGCn5ceBPS5NRVumYmnbB_b7tV8cqrczh53jfwEHJKYUghoiOl_fBjqStsmqHIgWYZ3yGHNOMiTKmId__sB-TI-w-AJAOR7pMDBpByAdEheXyzdlHW74HSznofNHMMpg4xnNTo3tfBTNXGa7XEq-Bprr468lo5V6Lzl0H7Fkwra013flVVhWt_TPYKVXk86eeAvEwnzzd34ezh9v5mPAsV53ETCpFnsdCIScbiVPE84gWaQlOlAQpjQBeYAgeWstwAJoyahKVFxNDQPOOGDcjFtneuKrl05UK5tbSqlHfjmexuwBJgjMdftGXPt-zS2c8V-kYuSq-xqlSNduVlBIKllPEkaVG2RTc6HBa_3RRkp1222mWvXfba29RZ_8EqX6D5zfx4boHRFtik7crVrZt_K78Bb3KQgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083713466</pqid></control><display><type>article</type><title>Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Fu, Haohao ; Zhang, Hong ; Chen, Haochuan ; Shao, Xueguang ; Chipot, Christophe ; Cai, Wensheng</creator><creatorcontrib>Fu, Haohao ; Zhang, Hong ; Chen, Haochuan ; Shao, Xueguang ; Chipot, Christophe ; Cai, Wensheng</creatorcontrib><description>A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) framework. Numerical applications on both toy models and nontrivial examples indicate that meta-eABF explores the free-energy surface significantly faster than either eABF or metadynamics (MtD) alone, without the need to stratify the reaction pathway. In some favorable cases, meta-eABF can be as much as five times faster than other importance-sampling algorithms. Many of the shortcomings inherent to eABF and MtD, like kinetic trapping in regions of configurational space already adequately sampled, the requirement of prior knowledge of the free-energy landscape to set up the simulation, are readily eliminated in meta-eABF. Meta-eABF, therefore, represents an appealing solution for a broad range of applications, especially when both eABF and MtD fail to achieve the desired result.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.8b01994</identifier><identifier>PMID: 30074802</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Physics</subject><ispartof>The journal of physical chemistry letters, 2018-08, Vol.9 (16), p.4738-4745</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3</citedby><cites>FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3</cites><orcidid>0000-0002-6457-7058 ; 0000-0001-6447-1096 ; 0000-0003-0908-0046 ; 0000-0002-3303-5109 ; 0000-0002-9122-1698 ; 0000-0001-5027-4382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30074802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03603345$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Haohao</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Chen, Haochuan</creatorcontrib><creatorcontrib>Shao, Xueguang</creatorcontrib><creatorcontrib>Chipot, Christophe</creatorcontrib><creatorcontrib>Cai, Wensheng</creatorcontrib><title>Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) framework. Numerical applications on both toy models and nontrivial examples indicate that meta-eABF explores the free-energy surface significantly faster than either eABF or metadynamics (MtD) alone, without the need to stratify the reaction pathway. In some favorable cases, meta-eABF can be as much as five times faster than other importance-sampling algorithms. Many of the shortcomings inherent to eABF and MtD, like kinetic trapping in regions of configurational space already adequately sampled, the requirement of prior knowledge of the free-energy landscape to set up the simulation, are readily eliminated in meta-eABF. Meta-eABF, therefore, represents an appealing solution for a broad range of applications, especially when both eABF and MtD fail to achieve the desired result.</description><subject>Chemical Sciences</subject><subject>Physics</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMofkx_gSC9VLDbSZO2qXdTNhUGCn5ceBPS5NRVumYmnbB_b7tV8cqrczh53jfwEHJKYUghoiOl_fBjqStsmqHIgWYZ3yGHNOMiTKmId__sB-TI-w-AJAOR7pMDBpByAdEheXyzdlHW74HSznofNHMMpg4xnNTo3tfBTNXGa7XEq-Bprr468lo5V6Lzl0H7Fkwra013flVVhWt_TPYKVXk86eeAvEwnzzd34ezh9v5mPAsV53ETCpFnsdCIScbiVPE84gWaQlOlAQpjQBeYAgeWstwAJoyahKVFxNDQPOOGDcjFtneuKrl05UK5tbSqlHfjmexuwBJgjMdftGXPt-zS2c8V-kYuSq-xqlSNduVlBIKllPEkaVG2RTc6HBa_3RRkp1222mWvXfba29RZ_8EqX6D5zfx4boHRFtik7crVrZt_K78Bb3KQgg</recordid><startdate>20180816</startdate><enddate>20180816</enddate><creator>Fu, Haohao</creator><creator>Zhang, Hong</creator><creator>Chen, Haochuan</creator><creator>Shao, Xueguang</creator><creator>Chipot, Christophe</creator><creator>Cai, Wensheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6457-7058</orcidid><orcidid>https://orcid.org/0000-0001-6447-1096</orcidid><orcidid>https://orcid.org/0000-0003-0908-0046</orcidid><orcidid>https://orcid.org/0000-0002-3303-5109</orcidid><orcidid>https://orcid.org/0000-0002-9122-1698</orcidid><orcidid>https://orcid.org/0000-0001-5027-4382</orcidid></search><sort><creationdate>20180816</creationdate><title>Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys</title><author>Fu, Haohao ; Zhang, Hong ; Chen, Haochuan ; Shao, Xueguang ; Chipot, Christophe ; Cai, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Sciences</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haohao</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Chen, Haochuan</creatorcontrib><creatorcontrib>Shao, Xueguang</creatorcontrib><creatorcontrib>Chipot, Christophe</creatorcontrib><creatorcontrib>Cai, Wensheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haohao</au><au>Zhang, Hong</au><au>Chen, Haochuan</au><au>Shao, Xueguang</au><au>Chipot, Christophe</au><au>Cai, Wensheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2018-08-16</date><risdate>2018</risdate><volume>9</volume><issue>16</issue><spage>4738</spage><epage>4745</epage><pages>4738-4745</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) framework. Numerical applications on both toy models and nontrivial examples indicate that meta-eABF explores the free-energy surface significantly faster than either eABF or metadynamics (MtD) alone, without the need to stratify the reaction pathway. In some favorable cases, meta-eABF can be as much as five times faster than other importance-sampling algorithms. Many of the shortcomings inherent to eABF and MtD, like kinetic trapping in regions of configurational space already adequately sampled, the requirement of prior knowledge of the free-energy landscape to set up the simulation, are readily eliminated in meta-eABF. Meta-eABF, therefore, represents an appealing solution for a broad range of applications, especially when both eABF and MtD fail to achieve the desired result.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30074802</pmid><doi>10.1021/acs.jpclett.8b01994</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6457-7058</orcidid><orcidid>https://orcid.org/0000-0001-6447-1096</orcidid><orcidid>https://orcid.org/0000-0003-0908-0046</orcidid><orcidid>https://orcid.org/0000-0002-3303-5109</orcidid><orcidid>https://orcid.org/0000-0002-9122-1698</orcidid><orcidid>https://orcid.org/0000-0001-5027-4382</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2018-08, Vol.9 (16), p.4738-4745 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03603345v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemical Sciences Physics |
title | Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zooming%20across%20the%20Free-Energy%20Landscape:%20Shaving%20Barriers,%20and%20Flooding%20Valleys&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Fu,%20Haohao&rft.date=2018-08-16&rft.volume=9&rft.issue=16&rft.spage=4738&rft.epage=4745&rft.pages=4738-4745&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.8b01994&rft_dat=%3Cproquest_hal_p%3E2083713466%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-88b958cee69357a4b24fedfc1ac00fdd0cfe7040373bd0e631d637f23ed1b94d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083713466&rft_id=info:pmid/30074802&rfr_iscdi=true |