Loading…
Optimal Entanglement Witnesses: A Scalable Data-Driven Approach
Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for speci...
Saved in:
Published in: | Physical review letters 2021-07, Vol.127 (4), p.1-040401, Article 040401 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3 |
container_end_page | 040401 |
container_issue | 4 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 127 |
creator | Frérot, Irénée Roscilde, Tommaso |
description | Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables. |
doi_str_mv | 10.1103/PhysRevLett.127.040401 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03604140v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559439601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</originalsourceid><addsrcrecordid>eNpdkd1Kw0AQRhdRsFZfQQLe6EXqTDbZJN5IaasVChV_8HKZpBObkiY1uy307d0SEZGBGRgOwzccIS4RBoggb5-Xe_PCuxlbO8AgHkDoCo9EDyFO_RgxPBY9AIl-ChCfijNjVgCAgUp64n6-seWaKm9SW6o_K15zbb2P0tZsDJs7b-i95lRRVrE3Jkv-uC13XHvDzaZtKF-ei5OCKsMXP7Mv3h8mb6OpP5s_Po2GMz-XaWL9BSWBxDzDgpKFRKQoJ5lmhMysMhXGmQwUyIgIuFCMrgc5hCp2D0IgF7Ivbrq7S6r0pnWR271uqNTT4UwfdiAVhBjCDh173bEu4teWjdXr0uRcVVRzszU6iKI0lKmCA3r1D10127Z2nxyoOAoTSMBRqqPytjGm5eI3AYI-ONB_HGjnQHcO5DcZJ3rK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557548080</pqid></control><display><type>article</type><title>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Frérot, Irénée ; Roscilde, Tommaso</creator><creatorcontrib>Frérot, Irénée ; Roscilde, Tommaso</creatorcontrib><description>Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.040401</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Certification ; Compatibility ; Entangled states ; Field theory ; Mapping ; Physics ; Polynomials ; Quantum entanglement</subject><ispartof>Physical review letters, 2021-07, Vol.127 (4), p.1-040401, Article 040401</ispartof><rights>Copyright American Physical Society Jul 23, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</citedby><cites>FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</cites><orcidid>0000-0002-7703-8539 ; 0000-0003-2398-0841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03604140$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Frérot, Irénée</creatorcontrib><creatorcontrib>Roscilde, Tommaso</creatorcontrib><title>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</title><title>Physical review letters</title><description>Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.</description><subject>Certification</subject><subject>Compatibility</subject><subject>Entangled states</subject><subject>Field theory</subject><subject>Mapping</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Quantum entanglement</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkd1Kw0AQRhdRsFZfQQLe6EXqTDbZJN5IaasVChV_8HKZpBObkiY1uy307d0SEZGBGRgOwzccIS4RBoggb5-Xe_PCuxlbO8AgHkDoCo9EDyFO_RgxPBY9AIl-ChCfijNjVgCAgUp64n6-seWaKm9SW6o_K15zbb2P0tZsDJs7b-i95lRRVrE3Jkv-uC13XHvDzaZtKF-ei5OCKsMXP7Mv3h8mb6OpP5s_Po2GMz-XaWL9BSWBxDzDgpKFRKQoJ5lmhMysMhXGmQwUyIgIuFCMrgc5hCp2D0IgF7Ivbrq7S6r0pnWR271uqNTT4UwfdiAVhBjCDh173bEu4teWjdXr0uRcVVRzszU6iKI0lKmCA3r1D10127Z2nxyoOAoTSMBRqqPytjGm5eI3AYI-ONB_HGjnQHcO5DcZJ3rK</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Frérot, Irénée</creator><creator>Roscilde, Tommaso</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7703-8539</orcidid><orcidid>https://orcid.org/0000-0003-2398-0841</orcidid></search><sort><creationdate>20210723</creationdate><title>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</title><author>Frérot, Irénée ; Roscilde, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Certification</topic><topic>Compatibility</topic><topic>Entangled states</topic><topic>Field theory</topic><topic>Mapping</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Quantum entanglement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frérot, Irénée</creatorcontrib><creatorcontrib>Roscilde, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frérot, Irénée</au><au>Roscilde, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</atitle><jtitle>Physical review letters</jtitle><date>2021-07-23</date><risdate>2021</risdate><volume>127</volume><issue>4</issue><spage>1</spage><epage>040401</epage><pages>1-040401</pages><artnum>040401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.040401</doi><orcidid>https://orcid.org/0000-0002-7703-8539</orcidid><orcidid>https://orcid.org/0000-0003-2398-0841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-07, Vol.127 (4), p.1-040401, Article 040401 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03604140v1 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Certification Compatibility Entangled states Field theory Mapping Physics Polynomials Quantum entanglement |
title | Optimal Entanglement Witnesses: A Scalable Data-Driven Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Entanglement%20Witnesses:%20A%20Scalable%20Data-Driven%20Approach&rft.jtitle=Physical%20review%20letters&rft.au=Fr%C3%A9rot,%20Ir%C3%A9n%C3%A9e&rft.date=2021-07-23&rft.volume=127&rft.issue=4&rft.spage=1&rft.epage=040401&rft.pages=1-040401&rft.artnum=040401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.040401&rft_dat=%3Cproquest_hal_p%3E2559439601%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557548080&rft_id=info:pmid/&rfr_iscdi=true |