Loading…

Optimal Entanglement Witnesses: A Scalable Data-Driven Approach

Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for speci...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-07, Vol.127 (4), p.1-040401, Article 040401
Main Authors: Frérot, Irénée, Roscilde, Tommaso
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3
cites cdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3
container_end_page 040401
container_issue 4
container_start_page 1
container_title Physical review letters
container_volume 127
creator Frérot, Irénée
Roscilde, Tommaso
description Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.
doi_str_mv 10.1103/PhysRevLett.127.040401
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03604140v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559439601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</originalsourceid><addsrcrecordid>eNpdkd1Kw0AQRhdRsFZfQQLe6EXqTDbZJN5IaasVChV_8HKZpBObkiY1uy307d0SEZGBGRgOwzccIS4RBoggb5-Xe_PCuxlbO8AgHkDoCo9EDyFO_RgxPBY9AIl-ChCfijNjVgCAgUp64n6-seWaKm9SW6o_K15zbb2P0tZsDJs7b-i95lRRVrE3Jkv-uC13XHvDzaZtKF-ei5OCKsMXP7Mv3h8mb6OpP5s_Po2GMz-XaWL9BSWBxDzDgpKFRKQoJ5lmhMysMhXGmQwUyIgIuFCMrgc5hCp2D0IgF7Ivbrq7S6r0pnWR271uqNTT4UwfdiAVhBjCDh173bEu4teWjdXr0uRcVVRzszU6iKI0lKmCA3r1D10127Z2nxyoOAoTSMBRqqPytjGm5eI3AYI-ONB_HGjnQHcO5DcZJ3rK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557548080</pqid></control><display><type>article</type><title>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Frérot, Irénée ; Roscilde, Tommaso</creator><creatorcontrib>Frérot, Irénée ; Roscilde, Tommaso</creatorcontrib><description>Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.040401</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Certification ; Compatibility ; Entangled states ; Field theory ; Mapping ; Physics ; Polynomials ; Quantum entanglement</subject><ispartof>Physical review letters, 2021-07, Vol.127 (4), p.1-040401, Article 040401</ispartof><rights>Copyright American Physical Society Jul 23, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</citedby><cites>FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</cites><orcidid>0000-0002-7703-8539 ; 0000-0003-2398-0841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03604140$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Frérot, Irénée</creatorcontrib><creatorcontrib>Roscilde, Tommaso</creatorcontrib><title>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</title><title>Physical review letters</title><description>Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.</description><subject>Certification</subject><subject>Compatibility</subject><subject>Entangled states</subject><subject>Field theory</subject><subject>Mapping</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Quantum entanglement</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkd1Kw0AQRhdRsFZfQQLe6EXqTDbZJN5IaasVChV_8HKZpBObkiY1uy307d0SEZGBGRgOwzccIS4RBoggb5-Xe_PCuxlbO8AgHkDoCo9EDyFO_RgxPBY9AIl-ChCfijNjVgCAgUp64n6-seWaKm9SW6o_K15zbb2P0tZsDJs7b-i95lRRVrE3Jkv-uC13XHvDzaZtKF-ei5OCKsMXP7Mv3h8mb6OpP5s_Po2GMz-XaWL9BSWBxDzDgpKFRKQoJ5lmhMysMhXGmQwUyIgIuFCMrgc5hCp2D0IgF7Ivbrq7S6r0pnWR271uqNTT4UwfdiAVhBjCDh173bEu4teWjdXr0uRcVVRzszU6iKI0lKmCA3r1D10127Z2nxyoOAoTSMBRqqPytjGm5eI3AYI-ONB_HGjnQHcO5DcZJ3rK</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Frérot, Irénée</creator><creator>Roscilde, Tommaso</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7703-8539</orcidid><orcidid>https://orcid.org/0000-0003-2398-0841</orcidid></search><sort><creationdate>20210723</creationdate><title>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</title><author>Frérot, Irénée ; Roscilde, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Certification</topic><topic>Compatibility</topic><topic>Entangled states</topic><topic>Field theory</topic><topic>Mapping</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Quantum entanglement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frérot, Irénée</creatorcontrib><creatorcontrib>Roscilde, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frérot, Irénée</au><au>Roscilde, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Entanglement Witnesses: A Scalable Data-Driven Approach</atitle><jtitle>Physical review letters</jtitle><date>2021-07-23</date><risdate>2021</risdate><volume>127</volume><issue>4</issue><spage>1</spage><epage>040401</epage><pages>1-040401</pages><artnum>040401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.040401</doi><orcidid>https://orcid.org/0000-0002-7703-8539</orcidid><orcidid>https://orcid.org/0000-0003-2398-0841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-07, Vol.127 (4), p.1-040401, Article 040401
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_03604140v1
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Certification
Compatibility
Entangled states
Field theory
Mapping
Physics
Polynomials
Quantum entanglement
title Optimal Entanglement Witnesses: A Scalable Data-Driven Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Entanglement%20Witnesses:%20A%20Scalable%20Data-Driven%20Approach&rft.jtitle=Physical%20review%20letters&rft.au=Fr%C3%A9rot,%20Ir%C3%A9n%C3%A9e&rft.date=2021-07-23&rft.volume=127&rft.issue=4&rft.spage=1&rft.epage=040401&rft.pages=1-040401&rft.artnum=040401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.040401&rft_dat=%3Cproquest_hal_p%3E2559439601%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-da8231cb1fa8d311a5ca39ba1eee6b647b326035aa0ef6e10ef2c0467103023d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557548080&rft_id=info:pmid/&rfr_iscdi=true