Loading…
MIL‐96‐Al for Li–S Batteries: Shape or Size?
Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with variou...
Saved in:
Published in: | Advanced materials (Weinheim) 2022-01, Vol.34 (4), p.e2107836-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43 |
container_end_page | n/a |
container_issue | 4 |
container_start_page | e2107836 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Geng, Pengbiao Wang, Lei Du, Meng Bai, Yang Li, Wenting Liu, Yanfang Chen, Shuangqiang Braunstein, Pierre Xu, Qiang Pang, Huan |
description | Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries.
MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries. |
doi_str_mv | 10.1002/adma.202107836 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616824v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622901155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EglJYGVEkFhhSznZ8sVlQ-I8UxFCYLddxRFBKStyCysQjIPGGfRJcFYrEwnLW3X3-yf4I2aHQowDs0BRD02PAKKSS4wrpUMFonIASq6QDiotYYSI3yKb3jwCgEHCdbPAkpUpS1SHs5jqfvX8oDCWro7Jpo7yavX_2oxMzHru2cv4o6j-YkYvCql-9ueMtslaa2rvt77NL7i_O706v4vz28vo0y2ObQIpxaqm1QDlDKzAtLCacDxwYKVBgWcgiLZFJZ5kbcJBliSkrneTWhE5Qk_AuOVjkPphaj9pqaNqpbkylr7Jcz2fAkaJkyQsN7P6CHbXN88T5sR5W3rq6Nk-umXjNhKJzR4gB3fuDPjaT9in8RDNkTAGlQgSqt6Bs23jfunL5Agp6bl7Pzeul-XBh9zt2Mhi6Yon_qA6AWgCvVe2m_8Tp7Owm-w3_AgpJjPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622901155</pqid></control><display><type>article</type><title>MIL‐96‐Al for Li–S Batteries: Shape or Size?</title><source>Wiley</source><creator>Geng, Pengbiao ; Wang, Lei ; Du, Meng ; Bai, Yang ; Li, Wenting ; Liu, Yanfang ; Chen, Shuangqiang ; Braunstein, Pierre ; Xu, Qiang ; Pang, Huan</creator><creatorcontrib>Geng, Pengbiao ; Wang, Lei ; Du, Meng ; Bai, Yang ; Li, Wenting ; Liu, Yanfang ; Chen, Shuangqiang ; Braunstein, Pierre ; Xu, Qiang ; Pang, Huan</creatorcontrib><description>Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries.
MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107836</identifier><identifier>PMID: 34719819</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Chemical Sciences ; Density functional theory ; hexagonal bipyramidal crystals ; hexagonal platelet crystals ; hexagonal prismatic bipyramidal crystals ; Lithium sulfur batteries ; Li–S batteries ; Material chemistry ; Materials science ; Metal-organic frameworks ; MIL‐96‐Al ; Particle size ; Platelet crystals ; shuttle effect</subject><ispartof>Advanced materials (Weinheim), 2022-01, Vol.34 (4), p.e2107836-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</citedby><cites>FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</cites><orcidid>0000-0002-5319-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34719819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03616824$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Pengbiao</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Du, Meng</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Li, Wenting</creatorcontrib><creatorcontrib>Liu, Yanfang</creatorcontrib><creatorcontrib>Chen, Shuangqiang</creatorcontrib><creatorcontrib>Braunstein, Pierre</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>MIL‐96‐Al for Li–S Batteries: Shape or Size?</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries.
MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.</description><subject>Aluminum</subject><subject>Chemical Sciences</subject><subject>Density functional theory</subject><subject>hexagonal bipyramidal crystals</subject><subject>hexagonal platelet crystals</subject><subject>hexagonal prismatic bipyramidal crystals</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>MIL‐96‐Al</subject><subject>Particle size</subject><subject>Platelet crystals</subject><subject>shuttle effect</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhy0EglJYGVEkFhhSznZ8sVlQ-I8UxFCYLddxRFBKStyCysQjIPGGfRJcFYrEwnLW3X3-yf4I2aHQowDs0BRD02PAKKSS4wrpUMFonIASq6QDiotYYSI3yKb3jwCgEHCdbPAkpUpS1SHs5jqfvX8oDCWro7Jpo7yavX_2oxMzHru2cv4o6j-YkYvCql-9ueMtslaa2rvt77NL7i_O706v4vz28vo0y2ObQIpxaqm1QDlDKzAtLCacDxwYKVBgWcgiLZFJZ5kbcJBliSkrneTWhE5Qk_AuOVjkPphaj9pqaNqpbkylr7Jcz2fAkaJkyQsN7P6CHbXN88T5sR5W3rq6Nk-umXjNhKJzR4gB3fuDPjaT9in8RDNkTAGlQgSqt6Bs23jfunL5Agp6bl7Pzeul-XBh9zt2Mhi6Yon_qA6AWgCvVe2m_8Tp7Owm-w3_AgpJjPw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Geng, Pengbiao</creator><creator>Wang, Lei</creator><creator>Du, Meng</creator><creator>Bai, Yang</creator><creator>Li, Wenting</creator><creator>Liu, Yanfang</creator><creator>Chen, Shuangqiang</creator><creator>Braunstein, Pierre</creator><creator>Xu, Qiang</creator><creator>Pang, Huan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></search><sort><creationdate>20220101</creationdate><title>MIL‐96‐Al for Li–S Batteries: Shape or Size?</title><author>Geng, Pengbiao ; Wang, Lei ; Du, Meng ; Bai, Yang ; Li, Wenting ; Liu, Yanfang ; Chen, Shuangqiang ; Braunstein, Pierre ; Xu, Qiang ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Chemical Sciences</topic><topic>Density functional theory</topic><topic>hexagonal bipyramidal crystals</topic><topic>hexagonal platelet crystals</topic><topic>hexagonal prismatic bipyramidal crystals</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>MIL‐96‐Al</topic><topic>Particle size</topic><topic>Platelet crystals</topic><topic>shuttle effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Pengbiao</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Du, Meng</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Li, Wenting</creatorcontrib><creatorcontrib>Liu, Yanfang</creatorcontrib><creatorcontrib>Chen, Shuangqiang</creatorcontrib><creatorcontrib>Braunstein, Pierre</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Pengbiao</au><au>Wang, Lei</au><au>Du, Meng</au><au>Bai, Yang</au><au>Li, Wenting</au><au>Liu, Yanfang</au><au>Chen, Shuangqiang</au><au>Braunstein, Pierre</au><au>Xu, Qiang</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIL‐96‐Al for Li–S Batteries: Shape or Size?</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>e2107836</spage><epage>n/a</epage><pages>e2107836-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries.
MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34719819</pmid><doi>10.1002/adma.202107836</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-01, Vol.34 (4), p.e2107836-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03616824v1 |
source | Wiley |
subjects | Aluminum Chemical Sciences Density functional theory hexagonal bipyramidal crystals hexagonal platelet crystals hexagonal prismatic bipyramidal crystals Lithium sulfur batteries Li–S batteries Material chemistry Materials science Metal-organic frameworks MIL‐96‐Al Particle size Platelet crystals shuttle effect |
title | MIL‐96‐Al for Li–S Batteries: Shape or Size? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIL%E2%80%9096%E2%80%90Al%20for%20Li%E2%80%93S%20Batteries:%20Shape%20or%20Size?&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Geng,%20Pengbiao&rft.date=2022-01-01&rft.volume=34&rft.issue=4&rft.spage=e2107836&rft.epage=n/a&rft.pages=e2107836-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107836&rft_dat=%3Cproquest_hal_p%3E2622901155%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622901155&rft_id=info:pmid/34719819&rfr_iscdi=true |