Loading…

Topological multi-view clustering for collaborative filtering

Collaborative filtering is a well-known technique for recommender systems. Collaborative filtering models use the available preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. Collaborative filtering suffers from the data sparsity proble...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science 2018, Vol.144, p.306-312
Main Authors: Falih, Issam, Grozavu, Nistor, Kanawati, Rushed, Bennani, Younès
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423
cites cdi_FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423
container_end_page 312
container_issue
container_start_page 306
container_title Procedia computer science
container_volume 144
creator Falih, Issam
Grozavu, Nistor
Kanawati, Rushed
Bennani, Younès
description Collaborative filtering is a well-known technique for recommender systems. Collaborative filtering models use the available preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. Collaborative filtering suffers from the data sparsity problem when users only rate a small set of items which makes the computation of users similarity imprecise and reduce consequently the accuracy of the recommended items. Clustering techniques include multiplex network clustering can be used to deal with this problem. In this paper, we propose a collaborative filtering system based on clustering multiplex network that predict the rate value that a user would give to an item. This approach looks, in a first step, for users having the same behavior or sharing the same characteristics. Then, use the ratings from those similar users found in the first step to predict other ratings. The proposed approach has been validated on MovieLens dataset and the obtained results have shown very promising performances.
doi_str_mv 10.1016/j.procs.2018.10.524
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03635943v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877050918322336</els_id><sourcerecordid>oai_HAL_hal_03635943v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEhPsF3DplUNLPpw2O-wwTcCQJnEZ5yhNk5EpW6akG-Lfk1KEOOGLrdd-LftB6I7gimBSP-yqYww6VRQTkZWKU7hAEyKapsQczy7_1NdomtIO52BCzEgzQfNNOAYftk4rX-xPvnfl2ZmPQvtT6k10h21hQyx08F61IarenU1hnR97t-jKKp_M9CffoLenx81yVa5fn1-Wi3WpmaB9aVrdYjAdU23TCmZrwFQoAKhtazh0XOVzAIOoqYVcM8BcCNqIzlgugLIbdD_ufVdeHqPbq_gpg3JytVjLQcOsZnwG7EzyLBtndQwpRWN_DQTLAZjcyW9gcgA2iBlYds1Hl8lvZAJRJu3MQZvORaN72QX3r_8L6_d0jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological multi-view clustering for collaborative filtering</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>ScienceDirect®</source><creator>Falih, Issam ; Grozavu, Nistor ; Kanawati, Rushed ; Bennani, Younès</creator><creatorcontrib>Falih, Issam ; Grozavu, Nistor ; Kanawati, Rushed ; Bennani, Younès</creatorcontrib><description>Collaborative filtering is a well-known technique for recommender systems. Collaborative filtering models use the available preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. Collaborative filtering suffers from the data sparsity problem when users only rate a small set of items which makes the computation of users similarity imprecise and reduce consequently the accuracy of the recommended items. Clustering techniques include multiplex network clustering can be used to deal with this problem. In this paper, we propose a collaborative filtering system based on clustering multiplex network that predict the rate value that a user would give to an item. This approach looks, in a first step, for users having the same behavior or sharing the same characteristics. Then, use the ratings from those similar users found in the first step to predict other ratings. The proposed approach has been validated on MovieLens dataset and the obtained results have shown very promising performances.</description><identifier>ISSN: 1877-0509</identifier><identifier>EISSN: 1877-0509</identifier><identifier>DOI: 10.1016/j.procs.2018.10.524</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial Intelligence ; Collaborative Filleting ; Community detection ; Computer Science ; Machine Learning ; Multiplex network ; Neural and Evolutionary Computing ; Recommender System ; Social and Information Networks ; Web</subject><ispartof>Procedia computer science, 2018, Vol.144, p.306-312</ispartof><rights>2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423</citedby><cites>FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423</cites><orcidid>0000-0001-7502-8022 ; 0000-0002-0149-6197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1877050918322336$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3547,4021,27921,27922,27923,45778</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03635943$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Falih, Issam</creatorcontrib><creatorcontrib>Grozavu, Nistor</creatorcontrib><creatorcontrib>Kanawati, Rushed</creatorcontrib><creatorcontrib>Bennani, Younès</creatorcontrib><title>Topological multi-view clustering for collaborative filtering</title><title>Procedia computer science</title><description>Collaborative filtering is a well-known technique for recommender systems. Collaborative filtering models use the available preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. Collaborative filtering suffers from the data sparsity problem when users only rate a small set of items which makes the computation of users similarity imprecise and reduce consequently the accuracy of the recommended items. Clustering techniques include multiplex network clustering can be used to deal with this problem. In this paper, we propose a collaborative filtering system based on clustering multiplex network that predict the rate value that a user would give to an item. This approach looks, in a first step, for users having the same behavior or sharing the same characteristics. Then, use the ratings from those similar users found in the first step to predict other ratings. The proposed approach has been validated on MovieLens dataset and the obtained results have shown very promising performances.</description><subject>Artificial Intelligence</subject><subject>Collaborative Filleting</subject><subject>Community detection</subject><subject>Computer Science</subject><subject>Machine Learning</subject><subject>Multiplex network</subject><subject>Neural and Evolutionary Computing</subject><subject>Recommender System</subject><subject>Social and Information Networks</subject><subject>Web</subject><issn>1877-0509</issn><issn>1877-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEhPsF3DplUNLPpw2O-wwTcCQJnEZ5yhNk5EpW6akG-Lfk1KEOOGLrdd-LftB6I7gimBSP-yqYww6VRQTkZWKU7hAEyKapsQczy7_1NdomtIO52BCzEgzQfNNOAYftk4rX-xPvnfl2ZmPQvtT6k10h21hQyx08F61IarenU1hnR97t-jKKp_M9CffoLenx81yVa5fn1-Wi3WpmaB9aVrdYjAdU23TCmZrwFQoAKhtazh0XOVzAIOoqYVcM8BcCNqIzlgugLIbdD_ufVdeHqPbq_gpg3JytVjLQcOsZnwG7EzyLBtndQwpRWN_DQTLAZjcyW9gcgA2iBlYds1Hl8lvZAJRJu3MQZvORaN72QX3r_8L6_d0jg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Falih, Issam</creator><creator>Grozavu, Nistor</creator><creator>Kanawati, Rushed</creator><creator>Bennani, Younès</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7502-8022</orcidid><orcidid>https://orcid.org/0000-0002-0149-6197</orcidid></search><sort><creationdate>2018</creationdate><title>Topological multi-view clustering for collaborative filtering</title><author>Falih, Issam ; Grozavu, Nistor ; Kanawati, Rushed ; Bennani, Younès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Collaborative Filleting</topic><topic>Community detection</topic><topic>Computer Science</topic><topic>Machine Learning</topic><topic>Multiplex network</topic><topic>Neural and Evolutionary Computing</topic><topic>Recommender System</topic><topic>Social and Information Networks</topic><topic>Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falih, Issam</creatorcontrib><creatorcontrib>Grozavu, Nistor</creatorcontrib><creatorcontrib>Kanawati, Rushed</creatorcontrib><creatorcontrib>Bennani, Younès</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Procedia computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falih, Issam</au><au>Grozavu, Nistor</au><au>Kanawati, Rushed</au><au>Bennani, Younès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological multi-view clustering for collaborative filtering</atitle><jtitle>Procedia computer science</jtitle><date>2018</date><risdate>2018</risdate><volume>144</volume><spage>306</spage><epage>312</epage><pages>306-312</pages><issn>1877-0509</issn><eissn>1877-0509</eissn><abstract>Collaborative filtering is a well-known technique for recommender systems. Collaborative filtering models use the available preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. Collaborative filtering suffers from the data sparsity problem when users only rate a small set of items which makes the computation of users similarity imprecise and reduce consequently the accuracy of the recommended items. Clustering techniques include multiplex network clustering can be used to deal with this problem. In this paper, we propose a collaborative filtering system based on clustering multiplex network that predict the rate value that a user would give to an item. This approach looks, in a first step, for users having the same behavior or sharing the same characteristics. Then, use the ratings from those similar users found in the first step to predict other ratings. The proposed approach has been validated on MovieLens dataset and the obtained results have shown very promising performances.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.procs.2018.10.524</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7502-8022</orcidid><orcidid>https://orcid.org/0000-0002-0149-6197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1877-0509
ispartof Procedia computer science, 2018, Vol.144, p.306-312
issn 1877-0509
1877-0509
language eng
recordid cdi_hal_primary_oai_HAL_hal_03635943v1
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; ScienceDirect®
subjects Artificial Intelligence
Collaborative Filleting
Community detection
Computer Science
Machine Learning
Multiplex network
Neural and Evolutionary Computing
Recommender System
Social and Information Networks
Web
title Topological multi-view clustering for collaborative filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20multi-view%20clustering%20for%20collaborative%20filtering&rft.jtitle=Procedia%20computer%20science&rft.au=Falih,%20Issam&rft.date=2018&rft.volume=144&rft.spage=306&rft.epage=312&rft.pages=306-312&rft.issn=1877-0509&rft.eissn=1877-0509&rft_id=info:doi/10.1016/j.procs.2018.10.524&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03635943v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-ebcb04ed3ab7b83f64028a4446fbe54d5a388404862f4a38340588278def58423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true