Loading…
Comparative Study of the Performances of Opaque and Transparent Patch Antennas
The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. An...
Saved in:
Published in: | Open journal of antennas and propagation 2022-06, Vol.10 (2), p.17-28 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1192-8e70da6b2d75aa11e94a0befa1dde508d9d1cc209a1c333984b94c36c4f061393 |
container_end_page | 28 |
container_issue | 2 |
container_start_page | 17 |
container_title | Open journal of antennas and propagation |
container_volume | 10 |
creator | Sissoko, Abdoulaye Chousseaud, Anne Razban, Tchanguiz Brunet, Marc Ginestar, Stéphane Diourté, Badié |
description | The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. Antennas differ by the dimensions in the ground plane mesh pattern. The opaque antenna only consists of a full copper deposit. The transparency work was mainly carried out on the ground plane as it is the largest area available. Specific attention is paid to optical transparency in the visible light spectrum, sheet resistance and electromagnetic performances in the [2.8; 3GHz] bandwidth. They are measured in each case, compared and discussed. Both simulations and measurement results show good performance, especially the antenna with the most transparent ground plane: A high level of optical transparency of almost 73%, coupled with a sheet resistance of less than 0.028 Ohms/sq and a gain of about 3.22dBi at 2.8GHz, slightly higher than the gain of the reference opaque antenna of about 2.66dBi at 2.99GHz. The opaque reference antenna has a bandwidth of 1.30 GHz while those of the transparent antennas are about 1.60 GHz and 2.10 GHz (S11< -10dB). This solution presents a real interest for low cost integrated and discrete antenna solutions in ISM band. |
doi_str_mv | 10.4236/ojapr.2022.102002 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03652281v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03652281v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1192-8e70da6b2d75aa11e94a0befa1dde508d9d1cc209a1c333984b94c36c4f061393</originalsourceid><addsrcrecordid>eNo9kEFrwkAQhZfSQqX1B_S21x5iZ2aTmD2KtLUgVag9L-PuBhVN0t0o-O-b1OJcZni8Nzw-IZ4QRimp_KXecRNGBEQjBAKgGzEgRTopUlS315vwXgxj3AEAQqa6GYjPaX1oOHC7PXn51R7dWdalbDdeLn0o63DgyvrYa4uGf45ecuXkKnAVu5SvWrnk1m7kpGp9VXF8FHcl76Mf_u8H8f32uprOkvni_WM6mScWUVNS-DE4ztfkxhkzotcpw9qXjM75DAqnHVpLoBltV1MX6VqnVuU2LSFHpdWDeL783fDeNGF74HA2NW_NbDI3vQYqz4gKPGHnxYvXhjrG4MtrAMH0_MwfP9PzMxd-6hdOA2Oa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative Study of the Performances of Opaque and Transparent Patch Antennas</title><source>EZB Electronic Journals Library</source><creator>Sissoko, Abdoulaye ; Chousseaud, Anne ; Razban, Tchanguiz ; Brunet, Marc ; Ginestar, Stéphane ; Diourté, Badié</creator><creatorcontrib>Sissoko, Abdoulaye ; Chousseaud, Anne ; Razban, Tchanguiz ; Brunet, Marc ; Ginestar, Stéphane ; Diourté, Badié</creatorcontrib><description>The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. Antennas differ by the dimensions in the ground plane mesh pattern. The opaque antenna only consists of a full copper deposit. The transparency work was mainly carried out on the ground plane as it is the largest area available. Specific attention is paid to optical transparency in the visible light spectrum, sheet resistance and electromagnetic performances in the [2.8; 3GHz] bandwidth. They are measured in each case, compared and discussed. Both simulations and measurement results show good performance, especially the antenna with the most transparent ground plane: A high level of optical transparency of almost 73%, coupled with a sheet resistance of less than 0.028 Ohms/sq and a gain of about 3.22dBi at 2.8GHz, slightly higher than the gain of the reference opaque antenna of about 2.66dBi at 2.99GHz. The opaque reference antenna has a bandwidth of 1.30 GHz while those of the transparent antennas are about 1.60 GHz and 2.10 GHz (S11< -10dB). This solution presents a real interest for low cost integrated and discrete antenna solutions in ISM band.</description><identifier>ISSN: 2329-8421</identifier><identifier>EISSN: 2329-8413</identifier><identifier>DOI: 10.4236/ojapr.2022.102002</identifier><language>eng</language><publisher>Scientific Research Publishing</publisher><subject>Electronics ; Engineering Sciences ; Other</subject><ispartof>Open journal of antennas and propagation, 2022-06, Vol.10 (2), p.17-28</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1192-8e70da6b2d75aa11e94a0befa1dde508d9d1cc209a1c333984b94c36c4f061393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03652281$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sissoko, Abdoulaye</creatorcontrib><creatorcontrib>Chousseaud, Anne</creatorcontrib><creatorcontrib>Razban, Tchanguiz</creatorcontrib><creatorcontrib>Brunet, Marc</creatorcontrib><creatorcontrib>Ginestar, Stéphane</creatorcontrib><creatorcontrib>Diourté, Badié</creatorcontrib><title>Comparative Study of the Performances of Opaque and Transparent Patch Antennas</title><title>Open journal of antennas and propagation</title><description>The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. Antennas differ by the dimensions in the ground plane mesh pattern. The opaque antenna only consists of a full copper deposit. The transparency work was mainly carried out on the ground plane as it is the largest area available. Specific attention is paid to optical transparency in the visible light spectrum, sheet resistance and electromagnetic performances in the [2.8; 3GHz] bandwidth. They are measured in each case, compared and discussed. Both simulations and measurement results show good performance, especially the antenna with the most transparent ground plane: A high level of optical transparency of almost 73%, coupled with a sheet resistance of less than 0.028 Ohms/sq and a gain of about 3.22dBi at 2.8GHz, slightly higher than the gain of the reference opaque antenna of about 2.66dBi at 2.99GHz. The opaque reference antenna has a bandwidth of 1.30 GHz while those of the transparent antennas are about 1.60 GHz and 2.10 GHz (S11< -10dB). This solution presents a real interest for low cost integrated and discrete antenna solutions in ISM band.</description><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Other</subject><issn>2329-8421</issn><issn>2329-8413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFrwkAQhZfSQqX1B_S21x5iZ2aTmD2KtLUgVag9L-PuBhVN0t0o-O-b1OJcZni8Nzw-IZ4QRimp_KXecRNGBEQjBAKgGzEgRTopUlS315vwXgxj3AEAQqa6GYjPaX1oOHC7PXn51R7dWdalbDdeLn0o63DgyvrYa4uGf45ecuXkKnAVu5SvWrnk1m7kpGp9VXF8FHcl76Mf_u8H8f32uprOkvni_WM6mScWUVNS-DE4ztfkxhkzotcpw9qXjM75DAqnHVpLoBltV1MX6VqnVuU2LSFHpdWDeL783fDeNGF74HA2NW_NbDI3vQYqz4gKPGHnxYvXhjrG4MtrAMH0_MwfP9PzMxd-6hdOA2Oa</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Sissoko, Abdoulaye</creator><creator>Chousseaud, Anne</creator><creator>Razban, Tchanguiz</creator><creator>Brunet, Marc</creator><creator>Ginestar, Stéphane</creator><creator>Diourté, Badié</creator><general>Scientific Research Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>202206</creationdate><title>Comparative Study of the Performances of Opaque and Transparent Patch Antennas</title><author>Sissoko, Abdoulaye ; Chousseaud, Anne ; Razban, Tchanguiz ; Brunet, Marc ; Ginestar, Stéphane ; Diourté, Badié</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1192-8e70da6b2d75aa11e94a0befa1dde508d9d1cc209a1c333984b94c36c4f061393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Other</topic><toplevel>online_resources</toplevel><creatorcontrib>Sissoko, Abdoulaye</creatorcontrib><creatorcontrib>Chousseaud, Anne</creatorcontrib><creatorcontrib>Razban, Tchanguiz</creatorcontrib><creatorcontrib>Brunet, Marc</creatorcontrib><creatorcontrib>Ginestar, Stéphane</creatorcontrib><creatorcontrib>Diourté, Badié</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Open journal of antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sissoko, Abdoulaye</au><au>Chousseaud, Anne</au><au>Razban, Tchanguiz</au><au>Brunet, Marc</au><au>Ginestar, Stéphane</au><au>Diourté, Badié</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of the Performances of Opaque and Transparent Patch Antennas</atitle><jtitle>Open journal of antennas and propagation</jtitle><date>2022-06</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>17</spage><epage>28</epage><pages>17-28</pages><issn>2329-8421</issn><eissn>2329-8413</eissn><abstract>The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. Antennas differ by the dimensions in the ground plane mesh pattern. The opaque antenna only consists of a full copper deposit. The transparency work was mainly carried out on the ground plane as it is the largest area available. Specific attention is paid to optical transparency in the visible light spectrum, sheet resistance and electromagnetic performances in the [2.8; 3GHz] bandwidth. They are measured in each case, compared and discussed. Both simulations and measurement results show good performance, especially the antenna with the most transparent ground plane: A high level of optical transparency of almost 73%, coupled with a sheet resistance of less than 0.028 Ohms/sq and a gain of about 3.22dBi at 2.8GHz, slightly higher than the gain of the reference opaque antenna of about 2.66dBi at 2.99GHz. The opaque reference antenna has a bandwidth of 1.30 GHz while those of the transparent antennas are about 1.60 GHz and 2.10 GHz (S11< -10dB). This solution presents a real interest for low cost integrated and discrete antenna solutions in ISM band.</abstract><pub>Scientific Research Publishing</pub><doi>10.4236/ojapr.2022.102002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-8421 |
ispartof | Open journal of antennas and propagation, 2022-06, Vol.10 (2), p.17-28 |
issn | 2329-8421 2329-8413 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03652281v1 |
source | EZB Electronic Journals Library |
subjects | Electronics Engineering Sciences Other |
title | Comparative Study of the Performances of Opaque and Transparent Patch Antennas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20the%20Performances%20of%20Opaque%20and%20Transparent%20Patch%20Antennas&rft.jtitle=Open%20journal%20of%20antennas%20and%20propagation&rft.au=Sissoko,%20Abdoulaye&rft.date=2022-06&rft.volume=10&rft.issue=2&rft.spage=17&rft.epage=28&rft.pages=17-28&rft.issn=2329-8421&rft.eissn=2329-8413&rft_id=info:doi/10.4236/ojapr.2022.102002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03652281v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1192-8e70da6b2d75aa11e94a0befa1dde508d9d1cc209a1c333984b94c36c4f061393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |