Loading…
A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity
Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or...
Saved in:
Published in: | Archives of computational methods in engineering 2018-01, Vol.25 (1), p.47-57 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583 |
container_end_page | 57 |
container_issue | 1 |
container_start_page | 47 |
container_title | Archives of computational methods in engineering |
container_volume | 25 |
creator | Ibañez, Rubén Abisset-Chavanne, Emmanuelle Aguado, Jose Vicente Gonzalez, David Cueto, Elias Chinesta, Francisco |
description | Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets. |
doi_str_mv | 10.1007/s11831-016-9197-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03653378v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970915873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</originalsourceid><addsrcrecordid>eNp1kMFOwkAQhhujiYg-gLdNPHlYnWHb7u6RAAoJxoucN9N2CyWlxd1Cwtu7pIZ48TSTyff_yXxR9IjwggDy1SMqgRww5Rq15PoqGqBSKUep4uuwo4i5gBRuozvvtwBJrPVoEK3G7IOaqmzrgi0tuaZq1my837uW8g3rWjaljvjUVUfbsEm72x866qq2oZrNavJdlVfdiVFTsEVjL4f76Kak2tuH3zmMVm-zr8mcLz_fF5PxkudxojuuciSFRCNMqJRWQ5mkJDIaycJKDLPM8owAirJUqQIQRZIhxCIXKcksUWIYPfe9G6rN3lU7cifTUmXm46U530CkiRBSHTGwTz0bfvs-WN-ZbXtw4RFvgjDQmCgpAoU9lbvWe2fLSy2COZs2vWkTTJuzaaNDZtRnfGCbtXV_mv8N_QDLNIBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970915873</pqid></control><display><type>article</type><title>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Ibañez, Rubén ; Abisset-Chavanne, Emmanuelle ; Aguado, Jose Vicente ; Gonzalez, David ; Cueto, Elias ; Chinesta, Francisco</creator><creatorcontrib>Ibañez, Rubén ; Abisset-Chavanne, Emmanuelle ; Aguado, Jose Vicente ; Gonzalez, David ; Cueto, Elias ; Chinesta, Francisco</creatorcontrib><description>Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-016-9197-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Classical mechanics ; Computer simulation ; Elasticity ; Engineering ; Engineering Sciences ; Machine learning ; Manifolds (mathematics) ; Mathematical and Computational Engineering ; Mathematical models ; Mechanics ; S.I.: Machine learning in computational mechanics ; Structural mechanics</subject><ispartof>Archives of computational methods in engineering, 2018-01, Vol.25 (1), p.47-57</ispartof><rights>CIMNE, Barcelona, Spain 2016</rights><rights>Archives of Computational Methods in Engineering is a copyright of Springer, (2016). All Rights Reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</citedby><cites>FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</cites><orcidid>0000-0002-6272-3429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1970915873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03653378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibañez, Rubén</creatorcontrib><creatorcontrib>Abisset-Chavanne, Emmanuelle</creatorcontrib><creatorcontrib>Aguado, Jose Vicente</creatorcontrib><creatorcontrib>Gonzalez, David</creatorcontrib><creatorcontrib>Cueto, Elias</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><title>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.</description><subject>Classical mechanics</subject><subject>Computer simulation</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>S.I.: Machine learning in computational mechanics</subject><subject>Structural mechanics</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMFOwkAQhhujiYg-gLdNPHlYnWHb7u6RAAoJxoucN9N2CyWlxd1Cwtu7pIZ48TSTyff_yXxR9IjwggDy1SMqgRww5Rq15PoqGqBSKUep4uuwo4i5gBRuozvvtwBJrPVoEK3G7IOaqmzrgi0tuaZq1my837uW8g3rWjaljvjUVUfbsEm72x866qq2oZrNavJdlVfdiVFTsEVjL4f76Kak2tuH3zmMVm-zr8mcLz_fF5PxkudxojuuciSFRCNMqJRWQ5mkJDIaycJKDLPM8owAirJUqQIQRZIhxCIXKcksUWIYPfe9G6rN3lU7cifTUmXm46U530CkiRBSHTGwTz0bfvs-WN-ZbXtw4RFvgjDQmCgpAoU9lbvWe2fLSy2COZs2vWkTTJuzaaNDZtRnfGCbtXV_mv8N_QDLNIBM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ibañez, Rubén</creator><creator>Abisset-Chavanne, Emmanuelle</creator><creator>Aguado, Jose Vicente</creator><creator>Gonzalez, David</creator><creator>Cueto, Elias</creator><creator>Chinesta, Francisco</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid></search><sort><creationdate>20180101</creationdate><title>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</title><author>Ibañez, Rubén ; Abisset-Chavanne, Emmanuelle ; Aguado, Jose Vicente ; Gonzalez, David ; Cueto, Elias ; Chinesta, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical mechanics</topic><topic>Computer simulation</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>S.I.: Machine learning in computational mechanics</topic><topic>Structural mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibañez, Rubén</creatorcontrib><creatorcontrib>Abisset-Chavanne, Emmanuelle</creatorcontrib><creatorcontrib>Aguado, Jose Vicente</creatorcontrib><creatorcontrib>Gonzalez, David</creatorcontrib><creatorcontrib>Cueto, Elias</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibañez, Rubén</au><au>Abisset-Chavanne, Emmanuelle</au><au>Aguado, Jose Vicente</au><au>Gonzalez, David</au><au>Cueto, Elias</au><au>Chinesta, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-016-9197-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1134-3060 |
ispartof | Archives of computational methods in engineering, 2018-01, Vol.25 (1), p.47-57 |
issn | 1134-3060 1886-1784 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03653378v1 |
source | ABI/INFORM Global; Springer Link |
subjects | Classical mechanics Computer simulation Elasticity Engineering Engineering Sciences Machine learning Manifolds (mathematics) Mathematical and Computational Engineering Mathematical models Mechanics S.I.: Machine learning in computational mechanics Structural mechanics |
title | A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Manifold%20Learning%20Approach%20to%20Data-Driven%20Computational%20Elasticity%20and%20Inelasticity&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Iba%C3%B1ez,%20Rub%C3%A9n&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-016-9197-9&rft_dat=%3Cproquest_hal_p%3E1970915873%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970915873&rft_id=info:pmid/&rfr_iscdi=true |