Loading…

A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity

Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or...

Full description

Saved in:
Bibliographic Details
Published in:Archives of computational methods in engineering 2018-01, Vol.25 (1), p.47-57
Main Authors: Ibañez, Rubén, Abisset-Chavanne, Emmanuelle, Aguado, Jose Vicente, Gonzalez, David, Cueto, Elias, Chinesta, Francisco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583
cites cdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583
container_end_page 57
container_issue 1
container_start_page 47
container_title Archives of computational methods in engineering
container_volume 25
creator Ibañez, Rubén
Abisset-Chavanne, Emmanuelle
Aguado, Jose Vicente
Gonzalez, David
Cueto, Elias
Chinesta, Francisco
description Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.
doi_str_mv 10.1007/s11831-016-9197-9
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03653378v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970915873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</originalsourceid><addsrcrecordid>eNp1kMFOwkAQhhujiYg-gLdNPHlYnWHb7u6RAAoJxoucN9N2CyWlxd1Cwtu7pIZ48TSTyff_yXxR9IjwggDy1SMqgRww5Rq15PoqGqBSKUep4uuwo4i5gBRuozvvtwBJrPVoEK3G7IOaqmzrgi0tuaZq1my837uW8g3rWjaljvjUVUfbsEm72x866qq2oZrNavJdlVfdiVFTsEVjL4f76Kak2tuH3zmMVm-zr8mcLz_fF5PxkudxojuuciSFRCNMqJRWQ5mkJDIaycJKDLPM8owAirJUqQIQRZIhxCIXKcksUWIYPfe9G6rN3lU7cifTUmXm46U530CkiRBSHTGwTz0bfvs-WN-ZbXtw4RFvgjDQmCgpAoU9lbvWe2fLSy2COZs2vWkTTJuzaaNDZtRnfGCbtXV_mv8N_QDLNIBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970915873</pqid></control><display><type>article</type><title>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Ibañez, Rubén ; Abisset-Chavanne, Emmanuelle ; Aguado, Jose Vicente ; Gonzalez, David ; Cueto, Elias ; Chinesta, Francisco</creator><creatorcontrib>Ibañez, Rubén ; Abisset-Chavanne, Emmanuelle ; Aguado, Jose Vicente ; Gonzalez, David ; Cueto, Elias ; Chinesta, Francisco</creatorcontrib><description>Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-016-9197-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Classical mechanics ; Computer simulation ; Elasticity ; Engineering ; Engineering Sciences ; Machine learning ; Manifolds (mathematics) ; Mathematical and Computational Engineering ; Mathematical models ; Mechanics ; S.I.: Machine learning in computational mechanics ; Structural mechanics</subject><ispartof>Archives of computational methods in engineering, 2018-01, Vol.25 (1), p.47-57</ispartof><rights>CIMNE, Barcelona, Spain 2016</rights><rights>Archives of Computational Methods in Engineering is a copyright of Springer, (2016). All Rights Reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</citedby><cites>FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</cites><orcidid>0000-0002-6272-3429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1970915873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03653378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibañez, Rubén</creatorcontrib><creatorcontrib>Abisset-Chavanne, Emmanuelle</creatorcontrib><creatorcontrib>Aguado, Jose Vicente</creatorcontrib><creatorcontrib>Gonzalez, David</creatorcontrib><creatorcontrib>Cueto, Elias</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><title>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.</description><subject>Classical mechanics</subject><subject>Computer simulation</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>S.I.: Machine learning in computational mechanics</subject><subject>Structural mechanics</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMFOwkAQhhujiYg-gLdNPHlYnWHb7u6RAAoJxoucN9N2CyWlxd1Cwtu7pIZ48TSTyff_yXxR9IjwggDy1SMqgRww5Rq15PoqGqBSKUep4uuwo4i5gBRuozvvtwBJrPVoEK3G7IOaqmzrgi0tuaZq1my837uW8g3rWjaljvjUVUfbsEm72x866qq2oZrNavJdlVfdiVFTsEVjL4f76Kak2tuH3zmMVm-zr8mcLz_fF5PxkudxojuuciSFRCNMqJRWQ5mkJDIaycJKDLPM8owAirJUqQIQRZIhxCIXKcksUWIYPfe9G6rN3lU7cifTUmXm46U530CkiRBSHTGwTz0bfvs-WN-ZbXtw4RFvgjDQmCgpAoU9lbvWe2fLSy2COZs2vWkTTJuzaaNDZtRnfGCbtXV_mv8N_QDLNIBM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ibañez, Rubén</creator><creator>Abisset-Chavanne, Emmanuelle</creator><creator>Aguado, Jose Vicente</creator><creator>Gonzalez, David</creator><creator>Cueto, Elias</creator><creator>Chinesta, Francisco</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid></search><sort><creationdate>20180101</creationdate><title>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</title><author>Ibañez, Rubén ; Abisset-Chavanne, Emmanuelle ; Aguado, Jose Vicente ; Gonzalez, David ; Cueto, Elias ; Chinesta, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical mechanics</topic><topic>Computer simulation</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>S.I.: Machine learning in computational mechanics</topic><topic>Structural mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibañez, Rubén</creatorcontrib><creatorcontrib>Abisset-Chavanne, Emmanuelle</creatorcontrib><creatorcontrib>Aguado, Jose Vicente</creatorcontrib><creatorcontrib>Gonzalez, David</creatorcontrib><creatorcontrib>Cueto, Elias</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibañez, Rubén</au><au>Abisset-Chavanne, Emmanuelle</au><au>Aguado, Jose Vicente</au><au>Gonzalez, David</au><au>Cueto, Elias</au><au>Chinesta, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,...), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. Even if one can be confident on the first type of equations, the second one contains modeling errors. Moreover, this second type of equations remains too particular and often fails in describing new experimental results. The vast majority of existing models lack of generality, and therefore must be constantly adapted or enriched to describe new experimental findings. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ axiomatic, universal laws while minimizing the need of explicit, often phenomenological, models. This technique is based on the use of manifold learning methodologies, that allow to extract the relevant information from large experimental datasets.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-016-9197-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1134-3060
ispartof Archives of computational methods in engineering, 2018-01, Vol.25 (1), p.47-57
issn 1134-3060
1886-1784
language eng
recordid cdi_hal_primary_oai_HAL_hal_03653378v1
source ABI/INFORM Global; Springer Link
subjects Classical mechanics
Computer simulation
Elasticity
Engineering
Engineering Sciences
Machine learning
Manifolds (mathematics)
Mathematical and Computational Engineering
Mathematical models
Mechanics
S.I.: Machine learning in computational mechanics
Structural mechanics
title A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Manifold%20Learning%20Approach%20to%20Data-Driven%20Computational%20Elasticity%20and%20Inelasticity&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Iba%C3%B1ez,%20Rub%C3%A9n&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-016-9197-9&rft_dat=%3Cproquest_hal_p%3E1970915873%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-8c1a81aa215af7e90f56a3ba27de71ba2fbcba00dff868003d5b1043c36a7b583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970915873&rft_id=info:pmid/&rfr_iscdi=true