Loading…

Active nematics across scales from cytoskeleton organization to tissue morphogenesis

Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular c...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in genetics & development 2022-04, Vol.73, p.101897-101897, Article 101897
Main Authors: Balasubramaniam, Lakshmi, Mège, René-Marc, Ladoux, Benoît
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13
cites cdi_FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13
container_end_page 101897
container_issue
container_start_page 101897
container_title Current opinion in genetics & development
container_volume 73
creator Balasubramaniam, Lakshmi
Mège, René-Marc
Ladoux, Benoît
description Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular constituents. These cells are anchored to each other and/or the underlying substrate through adhesion complexes and they regulate force generation by active cytoskeleton remodelling. The resulting contractility related changes at the level of each single cell impact tissue architecture by triggering changes in cell shape, cell movement and remodelling of the surrounding environment. These out of equilibrium processes occur through the consumption of energy, allowing biological systems to be described by active matter physics. ‘Active nematics’ a subclass of active matter encompasses cytoskeleton filaments, bacterial and eukaryotic cells allowing them to be modelled as rod-like elements to which nematic liquid crystal theories can be applied. In this review, we will discuss the concept of active nematics to understand biological processes across subcellular and multicellular scales, from single cell organization to cell extrusion, collective cell movements, differentiation and morphogenesis.
doi_str_mv 10.1016/j.gde.2021.101897
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03664690v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959437X21001428</els_id><sourcerecordid>2622282697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2Kqiy0P6AXlCMcsvVHYjvitEJQKq3UC5V6s5zJ7OIliRfbuxL99XUa4NjTaEbP-470EPKV0SWjTH7bLbcdLjnlbNp1oz6QBdOqKanQ9IQsaFM3ZSXU71NyFuOO0kwy-YmcippKkcEFeVhBckcsRhxschALC8HHWESwPcZiE_xQwEvy8Ql7TH4sfNja0f3JcF6SL5KL8YDF4MP-0W9xxOjiZ_JxY_uIX17nOfl1d_twc1-uf37_cbNal5CfpxJB1bRpUTWdrTqNagOUa8GoqjVra9vyVipAlF0tZGUV1C2iBqulqKACJs7J1dz7aHuzD26w4cV468z9am2mGxVSVrKhx4m9nNl98M8HjMkMLgL2vR3RH6LhknOuuWxURtmM_lMRcPPezaiZxJudyeLNJN7M4nPm4rX-0A7YvSfeTGfgegYwCzk6DCaCwxGwcwEhmc67_9T_BdOMlEo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622282697</pqid></control><display><type>article</type><title>Active nematics across scales from cytoskeleton organization to tissue morphogenesis</title><source>Elsevier</source><creator>Balasubramaniam, Lakshmi ; Mège, René-Marc ; Ladoux, Benoît</creator><creatorcontrib>Balasubramaniam, Lakshmi ; Mège, René-Marc ; Ladoux, Benoît</creatorcontrib><description>Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular constituents. These cells are anchored to each other and/or the underlying substrate through adhesion complexes and they regulate force generation by active cytoskeleton remodelling. The resulting contractility related changes at the level of each single cell impact tissue architecture by triggering changes in cell shape, cell movement and remodelling of the surrounding environment. These out of equilibrium processes occur through the consumption of energy, allowing biological systems to be described by active matter physics. ‘Active nematics’ a subclass of active matter encompasses cytoskeleton filaments, bacterial and eukaryotic cells allowing them to be modelled as rod-like elements to which nematic liquid crystal theories can be applied. In this review, we will discuss the concept of active nematics to understand biological processes across subcellular and multicellular scales, from single cell organization to cell extrusion, collective cell movements, differentiation and morphogenesis.</description><identifier>ISSN: 0959-437X</identifier><identifier>EISSN: 1879-0380</identifier><identifier>DOI: 10.1016/j.gde.2021.101897</identifier><identifier>PMID: 35063879</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biochemistry, Molecular Biology ; Biological Phenomena ; Biophysics ; Cell Movement - genetics ; Cell Shape ; Cytoskeleton - genetics ; Life Sciences ; Morphogenesis - genetics</subject><ispartof>Current opinion in genetics &amp; development, 2022-04, Vol.73, p.101897-101897, Article 101897</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13</citedby><cites>FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13</cites><orcidid>0000-0003-2086-1556 ; 0000-0001-8128-5543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35063879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-paris.hal.science/hal-03664690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Balasubramaniam, Lakshmi</creatorcontrib><creatorcontrib>Mège, René-Marc</creatorcontrib><creatorcontrib>Ladoux, Benoît</creatorcontrib><title>Active nematics across scales from cytoskeleton organization to tissue morphogenesis</title><title>Current opinion in genetics &amp; development</title><addtitle>Curr Opin Genet Dev</addtitle><description>Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular constituents. These cells are anchored to each other and/or the underlying substrate through adhesion complexes and they regulate force generation by active cytoskeleton remodelling. The resulting contractility related changes at the level of each single cell impact tissue architecture by triggering changes in cell shape, cell movement and remodelling of the surrounding environment. These out of equilibrium processes occur through the consumption of energy, allowing biological systems to be described by active matter physics. ‘Active nematics’ a subclass of active matter encompasses cytoskeleton filaments, bacterial and eukaryotic cells allowing them to be modelled as rod-like elements to which nematic liquid crystal theories can be applied. In this review, we will discuss the concept of active nematics to understand biological processes across subcellular and multicellular scales, from single cell organization to cell extrusion, collective cell movements, differentiation and morphogenesis.</description><subject>Biochemistry, Molecular Biology</subject><subject>Biological Phenomena</subject><subject>Biophysics</subject><subject>Cell Movement - genetics</subject><subject>Cell Shape</subject><subject>Cytoskeleton - genetics</subject><subject>Life Sciences</subject><subject>Morphogenesis - genetics</subject><issn>0959-437X</issn><issn>1879-0380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq2Kqiy0P6AXlCMcsvVHYjvitEJQKq3UC5V6s5zJ7OIliRfbuxL99XUa4NjTaEbP-470EPKV0SWjTH7bLbcdLjnlbNp1oz6QBdOqKanQ9IQsaFM3ZSXU71NyFuOO0kwy-YmcippKkcEFeVhBckcsRhxschALC8HHWESwPcZiE_xQwEvy8Ql7TH4sfNja0f3JcF6SL5KL8YDF4MP-0W9xxOjiZ_JxY_uIX17nOfl1d_twc1-uf37_cbNal5CfpxJB1bRpUTWdrTqNagOUa8GoqjVra9vyVipAlF0tZGUV1C2iBqulqKACJs7J1dz7aHuzD26w4cV468z9am2mGxVSVrKhx4m9nNl98M8HjMkMLgL2vR3RH6LhknOuuWxURtmM_lMRcPPezaiZxJudyeLNJN7M4nPm4rX-0A7YvSfeTGfgegYwCzk6DCaCwxGwcwEhmc67_9T_BdOMlEo</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Balasubramaniam, Lakshmi</creator><creator>Mège, René-Marc</creator><creator>Ladoux, Benoît</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2086-1556</orcidid><orcidid>https://orcid.org/0000-0001-8128-5543</orcidid></search><sort><creationdate>202204</creationdate><title>Active nematics across scales from cytoskeleton organization to tissue morphogenesis</title><author>Balasubramaniam, Lakshmi ; Mège, René-Marc ; Ladoux, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Biological Phenomena</topic><topic>Biophysics</topic><topic>Cell Movement - genetics</topic><topic>Cell Shape</topic><topic>Cytoskeleton - genetics</topic><topic>Life Sciences</topic><topic>Morphogenesis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramaniam, Lakshmi</creatorcontrib><creatorcontrib>Mège, René-Marc</creatorcontrib><creatorcontrib>Ladoux, Benoît</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Current opinion in genetics &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramaniam, Lakshmi</au><au>Mège, René-Marc</au><au>Ladoux, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active nematics across scales from cytoskeleton organization to tissue morphogenesis</atitle><jtitle>Current opinion in genetics &amp; development</jtitle><addtitle>Curr Opin Genet Dev</addtitle><date>2022-04</date><risdate>2022</risdate><volume>73</volume><spage>101897</spage><epage>101897</epage><pages>101897-101897</pages><artnum>101897</artnum><issn>0959-437X</issn><eissn>1879-0380</eissn><abstract>Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular constituents. These cells are anchored to each other and/or the underlying substrate through adhesion complexes and they regulate force generation by active cytoskeleton remodelling. The resulting contractility related changes at the level of each single cell impact tissue architecture by triggering changes in cell shape, cell movement and remodelling of the surrounding environment. These out of equilibrium processes occur through the consumption of energy, allowing biological systems to be described by active matter physics. ‘Active nematics’ a subclass of active matter encompasses cytoskeleton filaments, bacterial and eukaryotic cells allowing them to be modelled as rod-like elements to which nematic liquid crystal theories can be applied. In this review, we will discuss the concept of active nematics to understand biological processes across subcellular and multicellular scales, from single cell organization to cell extrusion, collective cell movements, differentiation and morphogenesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35063879</pmid><doi>10.1016/j.gde.2021.101897</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2086-1556</orcidid><orcidid>https://orcid.org/0000-0001-8128-5543</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-437X
ispartof Current opinion in genetics & development, 2022-04, Vol.73, p.101897-101897, Article 101897
issn 0959-437X
1879-0380
language eng
recordid cdi_hal_primary_oai_HAL_hal_03664690v1
source Elsevier
subjects Biochemistry, Molecular Biology
Biological Phenomena
Biophysics
Cell Movement - genetics
Cell Shape
Cytoskeleton - genetics
Life Sciences
Morphogenesis - genetics
title Active nematics across scales from cytoskeleton organization to tissue morphogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20nematics%20across%20scales%20from%20cytoskeleton%20organization%20to%20tissue%20morphogenesis&rft.jtitle=Current%20opinion%20in%20genetics%20&%20development&rft.au=Balasubramaniam,%20Lakshmi&rft.date=2022-04&rft.volume=73&rft.spage=101897&rft.epage=101897&rft.pages=101897-101897&rft.artnum=101897&rft.issn=0959-437X&rft.eissn=1879-0380&rft_id=info:doi/10.1016/j.gde.2021.101897&rft_dat=%3Cproquest_hal_p%3E2622282697%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-ec7509be79da4d8e7fc0283107581b5ab2b67cee6d5364a7c5bee8ca8634c4c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622282697&rft_id=info:pmid/35063879&rfr_iscdi=true