Loading…

Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information

Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict dr...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management 2018-10, Vol.32 (13), p.4345-4358
Main Authors: Bateni, Mohammad Mehdi, Behmanesh, Javad, Bazrafshan, Javad, Rezaie, Hossein, De Michele, Carlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953
cites cdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953
container_end_page 4358
container_issue 13
container_start_page 4345
container_title Water resources management
container_volume 32
creator Bateni, Mohammad Mehdi
Behmanesh, Javad
Bazrafshan, Javad
Rezaie, Hossein
De Michele, Carlo
description Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.
doi_str_mv 10.1007/s11269-018-2056-8
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03669810v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073883749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wN2AKxfR3MlkMlmKrwoVBes6JGnSRqZJTaaC_96UEV25uvcevnO4HITOgFwCIfwqA9StwAQ6XBPW4m4PTYBxiqFlZB9NiKgJbngDh-go53dCikuQCVKvfr3pbfW6imnAc5vW1UuKWmnf-zx4U92muF2uhqLahTeDj6F6yz4sq6dyDzYlFawK1dz21sQQ7Ig8BhfTWu32E3TgVJ_t6c88Rm_3d_ObKZ49PzzeXM-woYIOGIQBphfQgtZcM0G1a5VxnaGLxqnaUQGu1R0VvNaKNYwrpgwBWlNNHReMHqOLMXelerlJfq3Sl4zKy-n1TO40QttWdEA-obDnI7tJ8WNr8yDf4zaF8p6sCaddR3kjCgUjZVLMOVn3GwtE7lqXY-uytC53rcuueOrRkwsbljb9Jf9v-gbr94Uz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073883749</pqid></control><display><type>article</type><title>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Bateni, Mohammad Mehdi ; Behmanesh, Javad ; Bazrafshan, Javad ; Rezaie, Hossein ; De Michele, Carlo</creator><creatorcontrib>Bateni, Mohammad Mehdi ; Behmanesh, Javad ; Bazrafshan, Javad ; Rezaie, Hossein ; De Michele, Carlo</creatorcontrib><description>Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-018-2056-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications ; Atmospheric Sciences ; Autocorrelation ; Civil Engineering ; Data processing ; Drought ; Drought index ; Earth and Environmental Science ; Earth Sciences ; Environment ; Frameworks ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Lake basins ; Lakes ; Markov analysis ; Markov chains ; Mathematical models ; Meteorology ; Modelling ; Sciences of the Universe ; Sea surface ; Sea surface temperature ; Seasonal variations ; Seasonality ; Statistics ; Teleconnections (meteorology) ; Temperature (air-sea) ; Two dimensional models</subject><ispartof>Water resources management, 2018-10, Vol.32 (13), p.4345-4358</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Water Resources Management is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</citedby><cites>FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</cites><orcidid>0000-0002-4444-3239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2073883749/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2073883749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,11668,27903,27904,36039,44342,74642</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03669810$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bateni, Mohammad Mehdi</creatorcontrib><creatorcontrib>Behmanesh, Javad</creatorcontrib><creatorcontrib>Bazrafshan, Javad</creatorcontrib><creatorcontrib>Rezaie, Hossein</creatorcontrib><creatorcontrib>De Michele, Carlo</creatorcontrib><title>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.</description><subject>Applications</subject><subject>Atmospheric Sciences</subject><subject>Autocorrelation</subject><subject>Civil Engineering</subject><subject>Data processing</subject><subject>Drought</subject><subject>Drought index</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Frameworks</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Lake basins</subject><subject>Lakes</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Sciences of the Universe</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Statistics</subject><subject>Teleconnections (meteorology)</subject><subject>Temperature (air-sea)</subject><subject>Two dimensional models</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhYMoWB8_wN2AKxfR3MlkMlmKrwoVBes6JGnSRqZJTaaC_96UEV25uvcevnO4HITOgFwCIfwqA9StwAQ6XBPW4m4PTYBxiqFlZB9NiKgJbngDh-go53dCikuQCVKvfr3pbfW6imnAc5vW1UuKWmnf-zx4U92muF2uhqLahTeDj6F6yz4sq6dyDzYlFawK1dz21sQQ7Ig8BhfTWu32E3TgVJ_t6c88Rm_3d_ObKZ49PzzeXM-woYIOGIQBphfQgtZcM0G1a5VxnaGLxqnaUQGu1R0VvNaKNYwrpgwBWlNNHReMHqOLMXelerlJfq3Sl4zKy-n1TO40QttWdEA-obDnI7tJ8WNr8yDf4zaF8p6sCaddR3kjCgUjZVLMOVn3GwtE7lqXY-uytC53rcuueOrRkwsbljb9Jf9v-gbr94Uz</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bateni, Mohammad Mehdi</creator><creator>Behmanesh, Javad</creator><creator>Bazrafshan, Javad</creator><creator>Rezaie, Hossein</creator><creator>De Michele, Carlo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4444-3239</orcidid></search><sort><creationdate>20181001</creationdate><title>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</title><author>Bateni, Mohammad Mehdi ; Behmanesh, Javad ; Bazrafshan, Javad ; Rezaie, Hossein ; De Michele, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications</topic><topic>Atmospheric Sciences</topic><topic>Autocorrelation</topic><topic>Civil Engineering</topic><topic>Data processing</topic><topic>Drought</topic><topic>Drought index</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Frameworks</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Lake basins</topic><topic>Lakes</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Sciences of the Universe</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Statistics</topic><topic>Teleconnections (meteorology)</topic><topic>Temperature (air-sea)</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bateni, Mohammad Mehdi</creatorcontrib><creatorcontrib>Behmanesh, Javad</creatorcontrib><creatorcontrib>Bazrafshan, Javad</creatorcontrib><creatorcontrib>Rezaie, Hossein</creatorcontrib><creatorcontrib>De Michele, Carlo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bateni, Mohammad Mehdi</au><au>Behmanesh, Javad</au><au>Bazrafshan, Javad</au><au>Rezaie, Hossein</au><au>De Michele, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>32</volume><issue>13</issue><spage>4345</spage><epage>4358</epage><pages>4345-4358</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-018-2056-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4444-3239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2018-10, Vol.32 (13), p.4345-4358
issn 0920-4741
1573-1650
language eng
recordid cdi_hal_primary_oai_HAL_hal_03669810v1
source ABI/INFORM Global; Springer Nature
subjects Applications
Atmospheric Sciences
Autocorrelation
Civil Engineering
Data processing
Drought
Drought index
Earth and Environmental Science
Earth Sciences
Environment
Frameworks
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology
Hydrology/Water Resources
Lake basins
Lakes
Markov analysis
Markov chains
Mathematical models
Meteorology
Modelling
Sciences of the Universe
Sea surface
Sea surface temperature
Seasonal variations
Seasonality
Statistics
Teleconnections (meteorology)
Temperature (air-sea)
Two dimensional models
title Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Short-Term%20Probabilistic%20Drought%20Prediction%20Using%20Mediterranean%20Teleconnection%20Information&rft.jtitle=Water%20resources%20management&rft.au=Bateni,%20Mohammad%20Mehdi&rft.date=2018-10-01&rft.volume=32&rft.issue=13&rft.spage=4345&rft.epage=4358&rft.pages=4345-4358&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-018-2056-8&rft_dat=%3Cproquest_hal_p%3E2073883749%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073883749&rft_id=info:pmid/&rfr_iscdi=true