Loading…
Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information
Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict dr...
Saved in:
Published in: | Water resources management 2018-10, Vol.32 (13), p.4345-4358 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953 |
container_end_page | 4358 |
container_issue | 13 |
container_start_page | 4345 |
container_title | Water resources management |
container_volume | 32 |
creator | Bateni, Mohammad Mehdi Behmanesh, Javad Bazrafshan, Javad Rezaie, Hossein De Michele, Carlo |
description | Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally. |
doi_str_mv | 10.1007/s11269-018-2056-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03669810v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073883749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wN2AKxfR3MlkMlmKrwoVBes6JGnSRqZJTaaC_96UEV25uvcevnO4HITOgFwCIfwqA9StwAQ6XBPW4m4PTYBxiqFlZB9NiKgJbngDh-go53dCikuQCVKvfr3pbfW6imnAc5vW1UuKWmnf-zx4U92muF2uhqLahTeDj6F6yz4sq6dyDzYlFawK1dz21sQQ7Ig8BhfTWu32E3TgVJ_t6c88Rm_3d_ObKZ49PzzeXM-woYIOGIQBphfQgtZcM0G1a5VxnaGLxqnaUQGu1R0VvNaKNYwrpgwBWlNNHReMHqOLMXelerlJfq3Sl4zKy-n1TO40QttWdEA-obDnI7tJ8WNr8yDf4zaF8p6sCaddR3kjCgUjZVLMOVn3GwtE7lqXY-uytC53rcuueOrRkwsbljb9Jf9v-gbr94Uz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073883749</pqid></control><display><type>article</type><title>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Bateni, Mohammad Mehdi ; Behmanesh, Javad ; Bazrafshan, Javad ; Rezaie, Hossein ; De Michele, Carlo</creator><creatorcontrib>Bateni, Mohammad Mehdi ; Behmanesh, Javad ; Bazrafshan, Javad ; Rezaie, Hossein ; De Michele, Carlo</creatorcontrib><description>Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-018-2056-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications ; Atmospheric Sciences ; Autocorrelation ; Civil Engineering ; Data processing ; Drought ; Drought index ; Earth and Environmental Science ; Earth Sciences ; Environment ; Frameworks ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Lake basins ; Lakes ; Markov analysis ; Markov chains ; Mathematical models ; Meteorology ; Modelling ; Sciences of the Universe ; Sea surface ; Sea surface temperature ; Seasonal variations ; Seasonality ; Statistics ; Teleconnections (meteorology) ; Temperature (air-sea) ; Two dimensional models</subject><ispartof>Water resources management, 2018-10, Vol.32 (13), p.4345-4358</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Water Resources Management is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</citedby><cites>FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</cites><orcidid>0000-0002-4444-3239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2073883749/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2073883749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,11668,27903,27904,36039,44342,74642</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03669810$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bateni, Mohammad Mehdi</creatorcontrib><creatorcontrib>Behmanesh, Javad</creatorcontrib><creatorcontrib>Bazrafshan, Javad</creatorcontrib><creatorcontrib>Rezaie, Hossein</creatorcontrib><creatorcontrib>De Michele, Carlo</creatorcontrib><title>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.</description><subject>Applications</subject><subject>Atmospheric Sciences</subject><subject>Autocorrelation</subject><subject>Civil Engineering</subject><subject>Data processing</subject><subject>Drought</subject><subject>Drought index</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Frameworks</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Lake basins</subject><subject>Lakes</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Sciences of the Universe</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Statistics</subject><subject>Teleconnections (meteorology)</subject><subject>Temperature (air-sea)</subject><subject>Two dimensional models</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhYMoWB8_wN2AKxfR3MlkMlmKrwoVBes6JGnSRqZJTaaC_96UEV25uvcevnO4HITOgFwCIfwqA9StwAQ6XBPW4m4PTYBxiqFlZB9NiKgJbngDh-go53dCikuQCVKvfr3pbfW6imnAc5vW1UuKWmnf-zx4U92muF2uhqLahTeDj6F6yz4sq6dyDzYlFawK1dz21sQQ7Ig8BhfTWu32E3TgVJ_t6c88Rm_3d_ObKZ49PzzeXM-woYIOGIQBphfQgtZcM0G1a5VxnaGLxqnaUQGu1R0VvNaKNYwrpgwBWlNNHReMHqOLMXelerlJfq3Sl4zKy-n1TO40QttWdEA-obDnI7tJ8WNr8yDf4zaF8p6sCaddR3kjCgUjZVLMOVn3GwtE7lqXY-uytC53rcuueOrRkwsbljb9Jf9v-gbr94Uz</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bateni, Mohammad Mehdi</creator><creator>Behmanesh, Javad</creator><creator>Bazrafshan, Javad</creator><creator>Rezaie, Hossein</creator><creator>De Michele, Carlo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4444-3239</orcidid></search><sort><creationdate>20181001</creationdate><title>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</title><author>Bateni, Mohammad Mehdi ; Behmanesh, Javad ; Bazrafshan, Javad ; Rezaie, Hossein ; De Michele, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications</topic><topic>Atmospheric Sciences</topic><topic>Autocorrelation</topic><topic>Civil Engineering</topic><topic>Data processing</topic><topic>Drought</topic><topic>Drought index</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Frameworks</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Lake basins</topic><topic>Lakes</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Sciences of the Universe</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Statistics</topic><topic>Teleconnections (meteorology)</topic><topic>Temperature (air-sea)</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bateni, Mohammad Mehdi</creatorcontrib><creatorcontrib>Behmanesh, Javad</creatorcontrib><creatorcontrib>Bazrafshan, Javad</creatorcontrib><creatorcontrib>Rezaie, Hossein</creatorcontrib><creatorcontrib>De Michele, Carlo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bateni, Mohammad Mehdi</au><au>Behmanesh, Javad</au><au>Bazrafshan, Javad</au><au>Rezaie, Hossein</au><au>De Michele, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>32</volume><issue>13</issue><spage>4345</spage><epage>4358</epage><pages>4345-4358</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Timely forecasts of the onset or possible evolution of droughts is an important contribution to mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-M) to predict droughts. Agro-metrological drought index addressing seasonality and autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. Markov chain is adopted to model drought for joint occurrence of different classes of drought severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain model. The proposed model, which benefits suitability of Markov chain models for modeling droughts, showed improvement results in prediction scores relative to classic Markov chain model not including SST-M information, additionally.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-018-2056-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4444-3239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2018-10, Vol.32 (13), p.4345-4358 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03669810v1 |
source | ABI/INFORM Global; Springer Nature |
subjects | Applications Atmospheric Sciences Autocorrelation Civil Engineering Data processing Drought Drought index Earth and Environmental Science Earth Sciences Environment Frameworks Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology Hydrology/Water Resources Lake basins Lakes Markov analysis Markov chains Mathematical models Meteorology Modelling Sciences of the Universe Sea surface Sea surface temperature Seasonal variations Seasonality Statistics Teleconnections (meteorology) Temperature (air-sea) Two dimensional models |
title | Simple Short-Term Probabilistic Drought Prediction Using Mediterranean Teleconnection Information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Short-Term%20Probabilistic%20Drought%20Prediction%20Using%20Mediterranean%20Teleconnection%20Information&rft.jtitle=Water%20resources%20management&rft.au=Bateni,%20Mohammad%20Mehdi&rft.date=2018-10-01&rft.volume=32&rft.issue=13&rft.spage=4345&rft.epage=4358&rft.pages=4345-4358&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-018-2056-8&rft_dat=%3Cproquest_hal_p%3E2073883749%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-19c15bd161bb7b593bf6acf8c3d4fa2f391f6b83972ba5457a5ac01323b3f7953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073883749&rft_id=info:pmid/&rfr_iscdi=true |