Loading…

Origin of the non-linear elastic behavior of silicate glasses

[Display omitted] For small tension the response of a solid to an applied stress is given by Hooke’s law. Outside this linear regime the relation between stress and strain is no longer universal and at present there is no satisfactory insight on how to connect for disordered materials the stress-str...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2022-06, Vol.231, p.117855, Article 117855
Main Authors: Zhang, Zhen, Ispas, Simona, Kob, Walter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] For small tension the response of a solid to an applied stress is given by Hooke’s law. Outside this linear regime the relation between stress and strain is no longer universal and at present there is no satisfactory insight on how to connect for disordered materials the stress-strain relation to the microscopic properties of the system. Here we use atomistic computer simulations to establish this connection for the case of silicate glasses containing alkali modifiers. By probing how in the highly non-linear regime the stress-strain curve depends on composition, we are able to identify the microscopic mechanisms that are responsible for the complex dependence of stress on strain in these systems, notably the presence of an unexpected quasi-plateau in the tangent modulus. We trace back this dependence to the mobility of the modifiers which, without leaving their cage or modifying the topology of the network, are able to relieve the local stresses. Since the identified mechanism is general, the results obtained in this study will also be helpful for understanding the mechanical response of other disordered materials.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2022.117855