Loading…

A Review of Machine Learning Techniques in Analog Integrated Circuit Design Automation

Analog integrated circuit design is widely considered a time-consuming task due to the acute dependence of analog performance on the transistors’ and passives’ dimensions. An important research effort has been conducted in the past decade to reduce the front-end design cycles of analog circuits by m...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-02, Vol.11 (3), p.435
Main Authors: Mina, Rayan, Jabbour, Chadi, Sakr, George E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analog integrated circuit design is widely considered a time-consuming task due to the acute dependence of analog performance on the transistors’ and passives’ dimensions. An important research effort has been conducted in the past decade to reduce the front-end design cycles of analog circuits by means of various automation approaches. On the other hand, the significant progress in high-performance computing hardware has made machine learning an attractive and accessible solution for everyone. The objectives of this paper were: (1) to provide a comprehensive overview of the existing state-of-the-art machine learning techniques used in analog circuit sizing and analyze their effectiveness in achieving the desired goals; (2) to point out the remaining open challenges, as well as the most relevant research directions to be explored. Finally, the different analog circuits on which machine learning techniques were applied are also presented and their results discussed from a circuit designer perspective.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11030435