Loading…

A Partial Condition Number for Linear Least Squares Problems

We consider here the linear least squares problem $\min_{y \in \mathbb{R}^n}\|Ay-b\|_2$, where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m\times n}$ is a matrix of full column rank $n$, and we denote $x$ its solution. We assume that both $A$ and $b$ can be perturbed and that these perturbations ar...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 2007-01, Vol.29 (2), p.413-433
Main Authors: Arioli, Mario, Baboulin, Marc, Gratton, Serge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33
cites cdi_FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33
container_end_page 433
container_issue 2
container_start_page 413
container_title SIAM journal on matrix analysis and applications
container_volume 29
creator Arioli, Mario
Baboulin, Marc
Gratton, Serge
description We consider here the linear least squares problem $\min_{y \in \mathbb{R}^n}\|Ay-b\|_2$, where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m\times n}$ is a matrix of full column rank $n$, and we denote $x$ its solution. We assume that both $A$ and $b$ can be perturbed and that these perturbations are measured using the Frobenius or the spectral norm for $A$ and the Euclidean norm for $b$. In this paper, we are concerned with the condition number of a linear function of $x$ ($L^Tx$, where $L \in \mathbb{R}^{n\times k}$) for which we provide a sharp estimate that lies within a factor $\sqrt{3}$ of the true condition number. Provided the triangular $R$ factor of $A$ from $A^TA=R^TR$ is available, this estimate can be computed in $2kn^2$ flops. We also propose a statistical method that estimates the partial condition number by using the exact condition numbers in random orthogonal directions. If $R$ is available, this statistical approach enables us to obtain a condition estimate at a lower computational cost. In the case of the Frobenius norm, we derive a closed formula for the partial condition number that is based on the singular values and the right singular vectors of the matrix $A$.
doi_str_mv 10.1137/050643088
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03707449v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596222091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsH_0Hw5mE17yabD_BSilph0YJ6DtntG9yy3bTJruC_d0ulnmYYhodhCLkGdgfA1T0rmBScaX1CJsBMkSmQ-SmZMD16oYw-JxcprRkDKQxMyMOMLl3sG9fSeehWTd-Ejr4Omwoj9SHSsunQjYIu9fR9N7iIiS5jqFrcpEty5l2b8OpPp-Tz6fFjvsjKt-eX-azMap4XfeZBeiVByKpCg5xzZpQGqQyi9KI2DMBUrJKy8BJzVXuDlUGvV7mEXKw4n5LbA_fLtXYbm42LPza4xi5mpd1njCumhDDfMHZvDt1tDLsBU2_XYYjdOM-anEulNYh_YB1DShH9kQrM7n-0xx_5L0nyYZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923678814</pqid></control><display><type>article</type><title>A Partial Condition Number for Linear Least Squares Problems</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Arioli, Mario ; Baboulin, Marc ; Gratton, Serge</creator><creatorcontrib>Arioli, Mario ; Baboulin, Marc ; Gratton, Serge</creatorcontrib><description>We consider here the linear least squares problem $\min_{y \in \mathbb{R}^n}\|Ay-b\|_2$, where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m\times n}$ is a matrix of full column rank $n$, and we denote $x$ its solution. We assume that both $A$ and $b$ can be perturbed and that these perturbations are measured using the Frobenius or the spectral norm for $A$ and the Euclidean norm for $b$. In this paper, we are concerned with the condition number of a linear function of $x$ ($L^Tx$, where $L \in \mathbb{R}^{n\times k}$) for which we provide a sharp estimate that lies within a factor $\sqrt{3}$ of the true condition number. Provided the triangular $R$ factor of $A$ from $A^TA=R^TR$ is available, this estimate can be computed in $2kn^2$ flops. We also propose a statistical method that estimates the partial condition number by using the exact condition numbers in random orthogonal directions. If $R$ is available, this statistical approach enables us to obtain a condition estimate at a lower computational cost. In the case of the Frobenius norm, we derive a closed formula for the partial condition number that is based on the singular values and the right singular vectors of the matrix $A$.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/050643088</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Linear algebra ; Mathematics ; Norms ; Parameter estimation ; Statistical analysis</subject><ispartof>SIAM journal on matrix analysis and applications, 2007-01, Vol.29 (2), p.413-433</ispartof><rights>[Copyright] © 2007 Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33</citedby><cites>FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33</cites><orcidid>0000-0002-5021-2357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923678814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,3172,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03707449$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arioli, Mario</creatorcontrib><creatorcontrib>Baboulin, Marc</creatorcontrib><creatorcontrib>Gratton, Serge</creatorcontrib><title>A Partial Condition Number for Linear Least Squares Problems</title><title>SIAM journal on matrix analysis and applications</title><description>We consider here the linear least squares problem $\min_{y \in \mathbb{R}^n}\|Ay-b\|_2$, where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m\times n}$ is a matrix of full column rank $n$, and we denote $x$ its solution. We assume that both $A$ and $b$ can be perturbed and that these perturbations are measured using the Frobenius or the spectral norm for $A$ and the Euclidean norm for $b$. In this paper, we are concerned with the condition number of a linear function of $x$ ($L^Tx$, where $L \in \mathbb{R}^{n\times k}$) for which we provide a sharp estimate that lies within a factor $\sqrt{3}$ of the true condition number. Provided the triangular $R$ factor of $A$ from $A^TA=R^TR$ is available, this estimate can be computed in $2kn^2$ flops. We also propose a statistical method that estimates the partial condition number by using the exact condition numbers in random orthogonal directions. If $R$ is available, this statistical approach enables us to obtain a condition estimate at a lower computational cost. In the case of the Frobenius norm, we derive a closed formula for the partial condition number that is based on the singular values and the right singular vectors of the matrix $A$.</description><subject>Linear algebra</subject><subject>Mathematics</subject><subject>Norms</subject><subject>Parameter estimation</subject><subject>Statistical analysis</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpFkE1LAzEYhIMoWKsH_0Hw5mE17yabD_BSilph0YJ6DtntG9yy3bTJruC_d0ulnmYYhodhCLkGdgfA1T0rmBScaX1CJsBMkSmQ-SmZMD16oYw-JxcprRkDKQxMyMOMLl3sG9fSeehWTd-Ejr4Omwoj9SHSsunQjYIu9fR9N7iIiS5jqFrcpEty5l2b8OpPp-Tz6fFjvsjKt-eX-azMap4XfeZBeiVByKpCg5xzZpQGqQyi9KI2DMBUrJKy8BJzVXuDlUGvV7mEXKw4n5LbA_fLtXYbm42LPza4xi5mpd1njCumhDDfMHZvDt1tDLsBU2_XYYjdOM-anEulNYh_YB1DShH9kQrM7n-0xx_5L0nyYZg</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Arioli, Mario</creator><creator>Baboulin, Marc</creator><creator>Gratton, Serge</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5021-2357</orcidid></search><sort><creationdate>200701</creationdate><title>A Partial Condition Number for Linear Least Squares Problems</title><author>Arioli, Mario ; Baboulin, Marc ; Gratton, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Linear algebra</topic><topic>Mathematics</topic><topic>Norms</topic><topic>Parameter estimation</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arioli, Mario</creatorcontrib><creatorcontrib>Baboulin, Marc</creatorcontrib><creatorcontrib>Gratton, Serge</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Proquest Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arioli, Mario</au><au>Baboulin, Marc</au><au>Gratton, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Partial Condition Number for Linear Least Squares Problems</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2007-01</date><risdate>2007</risdate><volume>29</volume><issue>2</issue><spage>413</spage><epage>433</epage><pages>413-433</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>We consider here the linear least squares problem $\min_{y \in \mathbb{R}^n}\|Ay-b\|_2$, where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m\times n}$ is a matrix of full column rank $n$, and we denote $x$ its solution. We assume that both $A$ and $b$ can be perturbed and that these perturbations are measured using the Frobenius or the spectral norm for $A$ and the Euclidean norm for $b$. In this paper, we are concerned with the condition number of a linear function of $x$ ($L^Tx$, where $L \in \mathbb{R}^{n\times k}$) for which we provide a sharp estimate that lies within a factor $\sqrt{3}$ of the true condition number. Provided the triangular $R$ factor of $A$ from $A^TA=R^TR$ is available, this estimate can be computed in $2kn^2$ flops. We also propose a statistical method that estimates the partial condition number by using the exact condition numbers in random orthogonal directions. If $R$ is available, this statistical approach enables us to obtain a condition estimate at a lower computational cost. In the case of the Frobenius norm, we derive a closed formula for the partial condition number that is based on the singular values and the right singular vectors of the matrix $A$.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050643088</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5021-2357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2007-01, Vol.29 (2), p.413-433
issn 0895-4798
1095-7162
language eng
recordid cdi_hal_primary_oai_HAL_hal_03707449v1
source SIAM Journals Archive; ABI/INFORM Global; Business Source Ultimate (EBSCOHost)
subjects Linear algebra
Mathematics
Norms
Parameter estimation
Statistical analysis
title A Partial Condition Number for Linear Least Squares Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Partial%20Condition%20Number%20for%20Linear%20Least%20Squares%20Problems&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Arioli,%20Mario&rft.date=2007-01&rft.volume=29&rft.issue=2&rft.spage=413&rft.epage=433&rft.pages=413-433&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/050643088&rft_dat=%3Cproquest_hal_p%3E2596222091%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-f16f76146bbe9e33309781679ee6f4c90119b0b665f6e27cf9eb9ef8d26124d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923678814&rft_id=info:pmid/&rfr_iscdi=true