Loading…

Improving mechanical ice protection systems with topologyoptimization

In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization 2022-05, Vol.65 (5)
Main Authors: Marbœuf, Alexis, Budinger, Marc, Pommier-Budinger, Valérie, Palanque, Valérian, Bennani, Lokman
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page
container_title Structural and multidisciplinary optimization
container_volume 65
creator Marbœuf, Alexis
Budinger, Marc
Pommier-Budinger, Valérie
Palanque, Valérian
Bennani, Lokman
description In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.
doi_str_mv 10.1007/s00158-022-03235-8
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03712836v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03712836v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03712836v13</originalsourceid><addsrcrecordid>eNqVyrsKwjAUgOEMCtbLCzhldYieNL3EUaSi4OjgVkKJ7ZGmKU2o1KfXgi_g9MPHT8iaw5YDpDsHwGPJIAwZiFDETE5IwBMeMx6l9xmZO_cEAAnRPiDZxbSd7bEpqdFFpRosVE2x0PTLXhcebUPd4Lw2jr7QV9Tb1ta2HGzr0eBbjceSTB-qdnr164JsTtnteGaVqvO2Q6O6IbcK8_Phmo8GIuWhFEnPxT_vB1YfRU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving mechanical ice protection systems with topologyoptimization</title><source>Springer Link</source><creator>Marbœuf, Alexis ; Budinger, Marc ; Pommier-Budinger, Valérie ; Palanque, Valérian ; Bennani, Lokman</creator><creatorcontrib>Marbœuf, Alexis ; Budinger, Marc ; Pommier-Budinger, Valérie ; Palanque, Valérian ; Bennani, Lokman</creatorcontrib><description>In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.</description><identifier>ISSN: 1615-147X</identifier><identifier>DOI: 10.1007/s00158-022-03235-8</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Engineering Sciences ; Mechanics ; Other ; Physics</subject><ispartof>Structural and multidisciplinary optimization, 2022-05, Vol.65 (5)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2865-137X ; 0000-0001-9066-2320 ; 0000-0002-2865-137X ; 0000-0001-9066-2320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-03712836$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marbœuf, Alexis</creatorcontrib><creatorcontrib>Budinger, Marc</creatorcontrib><creatorcontrib>Pommier-Budinger, Valérie</creatorcontrib><creatorcontrib>Palanque, Valérian</creatorcontrib><creatorcontrib>Bennani, Lokman</creatorcontrib><title>Improving mechanical ice protection systems with topologyoptimization</title><title>Structural and multidisciplinary optimization</title><description>In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.</description><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Other</subject><subject>Physics</subject><issn>1615-147X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVyrsKwjAUgOEMCtbLCzhldYieNL3EUaSi4OjgVkKJ7ZGmKU2o1KfXgi_g9MPHT8iaw5YDpDsHwGPJIAwZiFDETE5IwBMeMx6l9xmZO_cEAAnRPiDZxbSd7bEpqdFFpRosVE2x0PTLXhcebUPd4Lw2jr7QV9Tb1ta2HGzr0eBbjceSTB-qdnr164JsTtnteGaVqvO2Q6O6IbcK8_Phmo8GIuWhFEnPxT_vB1YfRU8</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Marbœuf, Alexis</creator><creator>Budinger, Marc</creator><creator>Pommier-Budinger, Valérie</creator><creator>Palanque, Valérian</creator><creator>Bennani, Lokman</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid></search><sort><creationdate>202205</creationdate><title>Improving mechanical ice protection systems with topologyoptimization</title><author>Marbœuf, Alexis ; Budinger, Marc ; Pommier-Budinger, Valérie ; Palanque, Valérian ; Bennani, Lokman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03712836v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Other</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marbœuf, Alexis</creatorcontrib><creatorcontrib>Budinger, Marc</creatorcontrib><creatorcontrib>Pommier-Budinger, Valérie</creatorcontrib><creatorcontrib>Palanque, Valérian</creatorcontrib><creatorcontrib>Bennani, Lokman</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marbœuf, Alexis</au><au>Budinger, Marc</au><au>Pommier-Budinger, Valérie</au><au>Palanque, Valérian</au><au>Bennani, Lokman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving mechanical ice protection systems with topologyoptimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><date>2022-05</date><risdate>2022</risdate><volume>65</volume><issue>5</issue><issn>1615-147X</issn><abstract>In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00158-022-03235-8</doi><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2022-05, Vol.65 (5)
issn 1615-147X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03712836v1
source Springer Link
subjects Engineering Sciences
Mechanics
Other
Physics
title Improving mechanical ice protection systems with topologyoptimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20mechanical%20ice%20protection%20systems%20with%20topologyoptimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Marb%C5%93uf,%20Alexis&rft.date=2022-05&rft.volume=65&rft.issue=5&rft.issn=1615-147X&rft_id=info:doi/10.1007/s00158-022-03235-8&rft_dat=%3Chal%3Eoai_HAL_hal_03712836v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_03712836v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true