Loading…
Improving mechanical ice protection systems with topologyoptimization
In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to...
Saved in:
Published in: | Structural and multidisciplinary optimization 2022-05, Vol.65 (5) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Structural and multidisciplinary optimization |
container_volume | 65 |
creator | Marbœuf, Alexis Budinger, Marc Pommier-Budinger, Valérie Palanque, Valérian Bennani, Lokman |
description | In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate. |
doi_str_mv | 10.1007/s00158-022-03235-8 |
format | article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03712836v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03712836v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03712836v13</originalsourceid><addsrcrecordid>eNqVyrsKwjAUgOEMCtbLCzhldYieNL3EUaSi4OjgVkKJ7ZGmKU2o1KfXgi_g9MPHT8iaw5YDpDsHwGPJIAwZiFDETE5IwBMeMx6l9xmZO_cEAAnRPiDZxbSd7bEpqdFFpRosVE2x0PTLXhcebUPd4Lw2jr7QV9Tb1ta2HGzr0eBbjceSTB-qdnr164JsTtnteGaVqvO2Q6O6IbcK8_Phmo8GIuWhFEnPxT_vB1YfRU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving mechanical ice protection systems with topologyoptimization</title><source>Springer Link</source><creator>Marbœuf, Alexis ; Budinger, Marc ; Pommier-Budinger, Valérie ; Palanque, Valérian ; Bennani, Lokman</creator><creatorcontrib>Marbœuf, Alexis ; Budinger, Marc ; Pommier-Budinger, Valérie ; Palanque, Valérian ; Bennani, Lokman</creatorcontrib><description>In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.</description><identifier>ISSN: 1615-147X</identifier><identifier>DOI: 10.1007/s00158-022-03235-8</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Engineering Sciences ; Mechanics ; Other ; Physics</subject><ispartof>Structural and multidisciplinary optimization, 2022-05, Vol.65 (5)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2865-137X ; 0000-0001-9066-2320 ; 0000-0002-2865-137X ; 0000-0001-9066-2320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-03712836$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marbœuf, Alexis</creatorcontrib><creatorcontrib>Budinger, Marc</creatorcontrib><creatorcontrib>Pommier-Budinger, Valérie</creatorcontrib><creatorcontrib>Palanque, Valérian</creatorcontrib><creatorcontrib>Bennani, Lokman</creatorcontrib><title>Improving mechanical ice protection systems with topologyoptimization</title><title>Structural and multidisciplinary optimization</title><description>In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.</description><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Other</subject><subject>Physics</subject><issn>1615-147X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVyrsKwjAUgOEMCtbLCzhldYieNL3EUaSi4OjgVkKJ7ZGmKU2o1KfXgi_g9MPHT8iaw5YDpDsHwGPJIAwZiFDETE5IwBMeMx6l9xmZO_cEAAnRPiDZxbSd7bEpqdFFpRosVE2x0PTLXhcebUPd4Lw2jr7QV9Tb1ta2HGzr0eBbjceSTB-qdnr164JsTtnteGaVqvO2Q6O6IbcK8_Phmo8GIuWhFEnPxT_vB1YfRU8</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Marbœuf, Alexis</creator><creator>Budinger, Marc</creator><creator>Pommier-Budinger, Valérie</creator><creator>Palanque, Valérian</creator><creator>Bennani, Lokman</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid></search><sort><creationdate>202205</creationdate><title>Improving mechanical ice protection systems with topologyoptimization</title><author>Marbœuf, Alexis ; Budinger, Marc ; Pommier-Budinger, Valérie ; Palanque, Valérian ; Bennani, Lokman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03712836v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Other</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marbœuf, Alexis</creatorcontrib><creatorcontrib>Budinger, Marc</creatorcontrib><creatorcontrib>Pommier-Budinger, Valérie</creatorcontrib><creatorcontrib>Palanque, Valérian</creatorcontrib><creatorcontrib>Bennani, Lokman</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marbœuf, Alexis</au><au>Budinger, Marc</au><au>Pommier-Budinger, Valérie</au><au>Palanque, Valérian</au><au>Bennani, Lokman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving mechanical ice protection systems with topologyoptimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><date>2022-05</date><risdate>2022</risdate><volume>65</volume><issue>5</issue><issn>1615-147X</issn><abstract>In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft surfaces from ice buildup. Such systems produce deformation of the protected surface leading to stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protecting a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical-based ice protection systems can be improved through the topologymodification of the substrate.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00158-022-03235-8</doi><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid><orcidid>https://orcid.org/0000-0002-2865-137X</orcidid><orcidid>https://orcid.org/0000-0001-9066-2320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2022-05, Vol.65 (5) |
issn | 1615-147X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03712836v1 |
source | Springer Link |
subjects | Engineering Sciences Mechanics Other Physics |
title | Improving mechanical ice protection systems with topologyoptimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20mechanical%20ice%20protection%20systems%20with%20topologyoptimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Marb%C5%93uf,%20Alexis&rft.date=2022-05&rft.volume=65&rft.issue=5&rft.issn=1615-147X&rft_id=info:doi/10.1007/s00158-022-03235-8&rft_dat=%3Chal%3Eoai_HAL_hal_03712836v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_03712836v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |