Loading…
Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution
Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular ent...
Saved in:
Published in: | Journal of chemical theory and computation 2021-02, Vol.17 (2), p.1133-1142 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3 |
container_end_page | 1142 |
container_issue | 2 |
container_start_page | 1133 |
container_title | Journal of chemical theory and computation |
container_volume | 17 |
creator | Pereira, Gilberto P Cecchini, Marco |
description | Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery. |
doi_str_mv | 10.1021/acs.jctc.0c00978 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03721749v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476569335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</originalsourceid><addsrcrecordid>eNp1kc2L1DAYxoMo7ofePUnAi4Id3zRp0xyHYd0RZhFZPYc0TZwOaTMmzcL-96bb2TkInp7w5ve8HzwIvSOwIlCSL0rH1UFPegUaQPDmBbokFROFqMv65flNmgt0FeMBgFJW0tfoIishFRGXaLpLbupbFfsR_0hZiq0Kgx97jdfHY_BK77H1AU97gzfK6eTU1PsRe7uU_Gj73yk8FZXDN-MU_PFx_r4flHP4zjuTTSbiPODeuzSDb9Arq1w0b096jX59vfm52Ra777ffNutdoahopkLwmnNLjNZlV1LVqUpDpS1QpsBY0C0XTAvbNarltLGMCc44rxretNCJuqPX6NPSd6-cPIZ-UOFRetXL7Xon5xpQXhLOxAPJ7MeFzUf_SSZOcuijNs6p0fgUZcl4XdWC0iqjH_5BDz6FfP5MCShroBVkChZKBx9jMPa8AQE5pydzenJOT57Sy5b3p8apHUx3NjzHlYHPC_BkfR76335_AfpFpec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490260350</pqid></control><display><type>article</type><title>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Pereira, Gilberto P ; Cecchini, Marco</creator><creatorcontrib>Pereira, Gilberto P ; Cecchini, Marco</creatorcontrib><description>Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00978</identifier><identifier>PMID: 33411519</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; Chemical Sciences ; Clustering ; Entropy ; Entropy of solution ; Fourier analysis ; Harmonic analysis ; Ligands ; Mathematical analysis ; Molecular dynamics ; or physical chemistry ; Simulation ; Theoretical and ; Thermodynamics ; Vapor phases</subject><ispartof>Journal of chemical theory and computation, 2021-02, Vol.17 (2), p.1133-1142</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 9, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</citedby><cites>FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</cites><orcidid>0000-0003-2671-1583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33411519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03721749$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereira, Gilberto P</creatorcontrib><creatorcontrib>Cecchini, Marco</creatorcontrib><title>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.</description><subject>Binding</subject><subject>Chemical Sciences</subject><subject>Clustering</subject><subject>Entropy</subject><subject>Entropy of solution</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>or physical chemistry</subject><subject>Simulation</subject><subject>Theoretical and</subject><subject>Thermodynamics</subject><subject>Vapor phases</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc2L1DAYxoMo7ofePUnAi4Id3zRp0xyHYd0RZhFZPYc0TZwOaTMmzcL-96bb2TkInp7w5ve8HzwIvSOwIlCSL0rH1UFPegUaQPDmBbokFROFqMv65flNmgt0FeMBgFJW0tfoIishFRGXaLpLbupbFfsR_0hZiq0Kgx97jdfHY_BK77H1AU97gzfK6eTU1PsRe7uU_Gj73yk8FZXDN-MU_PFx_r4flHP4zjuTTSbiPODeuzSDb9Arq1w0b096jX59vfm52Ra777ffNutdoahopkLwmnNLjNZlV1LVqUpDpS1QpsBY0C0XTAvbNarltLGMCc44rxretNCJuqPX6NPSd6-cPIZ-UOFRetXL7Xon5xpQXhLOxAPJ7MeFzUf_SSZOcuijNs6p0fgUZcl4XdWC0iqjH_5BDz6FfP5MCShroBVkChZKBx9jMPa8AQE5pydzenJOT57Sy5b3p8apHUx3NjzHlYHPC_BkfR76335_AfpFpec</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Pereira, Gilberto P</creator><creator>Cecchini, Marco</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2671-1583</orcidid></search><sort><creationdate>20210209</creationdate><title>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</title><author>Pereira, Gilberto P ; Cecchini, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding</topic><topic>Chemical Sciences</topic><topic>Clustering</topic><topic>Entropy</topic><topic>Entropy of solution</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>or physical chemistry</topic><topic>Simulation</topic><topic>Theoretical and</topic><topic>Thermodynamics</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Gilberto P</creatorcontrib><creatorcontrib>Cecchini, Marco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Gilberto P</au><au>Cecchini, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-02-09</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>1133</spage><epage>1142</epage><pages>1133-1142</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33411519</pmid><doi>10.1021/acs.jctc.0c00978</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2671-1583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2021-02, Vol.17 (2), p.1133-1142 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03721749v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Binding Chemical Sciences Clustering Entropy Entropy of solution Fourier analysis Harmonic analysis Ligands Mathematical analysis Molecular dynamics or physical chemistry Simulation Theoretical and Thermodynamics Vapor phases |
title | Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multibasin%20Quasi-Harmonic%20Approach%20for%20the%20Calculation%20of%20the%20Configurational%20Entropy%20of%20Small%20Molecules%20in%20Solution&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Pereira,%20Gilberto%20P&rft.date=2021-02-09&rft.volume=17&rft.issue=2&rft.spage=1133&rft.epage=1142&rft.pages=1133-1142&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00978&rft_dat=%3Cproquest_hal_p%3E2476569335%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490260350&rft_id=info:pmid/33411519&rfr_iscdi=true |