Loading…

Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution

Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular ent...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2021-02, Vol.17 (2), p.1133-1142
Main Authors: Pereira, Gilberto P, Cecchini, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3
cites cdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3
container_end_page 1142
container_issue 2
container_start_page 1133
container_title Journal of chemical theory and computation
container_volume 17
creator Pereira, Gilberto P
Cecchini, Marco
description Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.
doi_str_mv 10.1021/acs.jctc.0c00978
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03721749v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476569335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</originalsourceid><addsrcrecordid>eNp1kc2L1DAYxoMo7ofePUnAi4Id3zRp0xyHYd0RZhFZPYc0TZwOaTMmzcL-96bb2TkInp7w5ve8HzwIvSOwIlCSL0rH1UFPegUaQPDmBbokFROFqMv65flNmgt0FeMBgFJW0tfoIishFRGXaLpLbupbFfsR_0hZiq0Kgx97jdfHY_BK77H1AU97gzfK6eTU1PsRe7uU_Gj73yk8FZXDN-MU_PFx_r4flHP4zjuTTSbiPODeuzSDb9Arq1w0b096jX59vfm52Ra777ffNutdoahopkLwmnNLjNZlV1LVqUpDpS1QpsBY0C0XTAvbNarltLGMCc44rxretNCJuqPX6NPSd6-cPIZ-UOFRetXL7Xon5xpQXhLOxAPJ7MeFzUf_SSZOcuijNs6p0fgUZcl4XdWC0iqjH_5BDz6FfP5MCShroBVkChZKBx9jMPa8AQE5pydzenJOT57Sy5b3p8apHUx3NjzHlYHPC_BkfR76335_AfpFpec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490260350</pqid></control><display><type>article</type><title>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pereira, Gilberto P ; Cecchini, Marco</creator><creatorcontrib>Pereira, Gilberto P ; Cecchini, Marco</creatorcontrib><description>Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00978</identifier><identifier>PMID: 33411519</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; Chemical Sciences ; Clustering ; Entropy ; Entropy of solution ; Fourier analysis ; Harmonic analysis ; Ligands ; Mathematical analysis ; Molecular dynamics ; or physical chemistry ; Simulation ; Theoretical and ; Thermodynamics ; Vapor phases</subject><ispartof>Journal of chemical theory and computation, 2021-02, Vol.17 (2), p.1133-1142</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 9, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</citedby><cites>FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</cites><orcidid>0000-0003-2671-1583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33411519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03721749$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereira, Gilberto P</creatorcontrib><creatorcontrib>Cecchini, Marco</creatorcontrib><title>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.</description><subject>Binding</subject><subject>Chemical Sciences</subject><subject>Clustering</subject><subject>Entropy</subject><subject>Entropy of solution</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>or physical chemistry</subject><subject>Simulation</subject><subject>Theoretical and</subject><subject>Thermodynamics</subject><subject>Vapor phases</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc2L1DAYxoMo7ofePUnAi4Id3zRp0xyHYd0RZhFZPYc0TZwOaTMmzcL-96bb2TkInp7w5ve8HzwIvSOwIlCSL0rH1UFPegUaQPDmBbokFROFqMv65flNmgt0FeMBgFJW0tfoIishFRGXaLpLbupbFfsR_0hZiq0Kgx97jdfHY_BK77H1AU97gzfK6eTU1PsRe7uU_Gj73yk8FZXDN-MU_PFx_r4flHP4zjuTTSbiPODeuzSDb9Arq1w0b096jX59vfm52Ra777ffNutdoahopkLwmnNLjNZlV1LVqUpDpS1QpsBY0C0XTAvbNarltLGMCc44rxretNCJuqPX6NPSd6-cPIZ-UOFRetXL7Xon5xpQXhLOxAPJ7MeFzUf_SSZOcuijNs6p0fgUZcl4XdWC0iqjH_5BDz6FfP5MCShroBVkChZKBx9jMPa8AQE5pydzenJOT57Sy5b3p8apHUx3NjzHlYHPC_BkfR76335_AfpFpec</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Pereira, Gilberto P</creator><creator>Cecchini, Marco</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2671-1583</orcidid></search><sort><creationdate>20210209</creationdate><title>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</title><author>Pereira, Gilberto P ; Cecchini, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding</topic><topic>Chemical Sciences</topic><topic>Clustering</topic><topic>Entropy</topic><topic>Entropy of solution</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>or physical chemistry</topic><topic>Simulation</topic><topic>Theoretical and</topic><topic>Thermodynamics</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Gilberto P</creatorcontrib><creatorcontrib>Cecchini, Marco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Gilberto P</au><au>Cecchini, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-02-09</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>1133</spage><epage>1142</epage><pages>1133-1142</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Entropy is a key thermodynamic property governing most biomolecular processes, including binding. Nonetheless, quantification of the configurational entropy of a single molecule in solution remains a grand challenge. Here, we present an original approach for the calculation of absolute molecular entropies based on the analysis of converged molecular dynamics (MD) simulations. Our method, named quasi-harmonic multibasin (QHMB), relies on a multibasin decomposition of the simulated trajectory by root-mean-square deviation clustering and subsequent quasi-harmonic analysis (QHA) of extracted sub-trajectories. Last, the entropy of the landscape is evaluated using the Gibbs formula. Because of the nature of QHA, this method is directly applicable to explicit-solvent simulations to access configurational entropies in solution. When compared with calorimetric data from NIST, QHMB is shown to predict absolute entropies in the gas phase for 23 small molecules with a root-mean-squared error of 0.36 kcal/mol from the experiments. In addition, the introduction of a QHMB correction in MM/GBSA calculations to account for the ligand configurational entropy loss on binding is shown to improve the correlation between calculated and experimental binding affinities with R2 increasing from 0.67 to 0.78. Because this entropy correction penalizes large and flexible ligands more strongly, it might be useful to reduce the false-positive rate in virtual screening. The availability of an automatic procedure to compute QHMB entropies makes it a new available tool in the field of drug discovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33411519</pmid><doi>10.1021/acs.jctc.0c00978</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2671-1583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2021-02, Vol.17 (2), p.1133-1142
issn 1549-9618
1549-9626
language eng
recordid cdi_hal_primary_oai_HAL_hal_03721749v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Binding
Chemical Sciences
Clustering
Entropy
Entropy of solution
Fourier analysis
Harmonic analysis
Ligands
Mathematical analysis
Molecular dynamics
or physical chemistry
Simulation
Theoretical and
Thermodynamics
Vapor phases
title Multibasin Quasi-Harmonic Approach for the Calculation of the Configurational Entropy of Small Molecules in Solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multibasin%20Quasi-Harmonic%20Approach%20for%20the%20Calculation%20of%20the%20Configurational%20Entropy%20of%20Small%20Molecules%20in%20Solution&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Pereira,%20Gilberto%20P&rft.date=2021-02-09&rft.volume=17&rft.issue=2&rft.spage=1133&rft.epage=1142&rft.pages=1133-1142&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00978&rft_dat=%3Cproquest_hal_p%3E2476569335%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-97677f1ecc2d23ada5c05cf034a0ef0cb794c9fd8ab738f44974775878b0d96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490260350&rft_id=info:pmid/33411519&rfr_iscdi=true