Loading…

Quantum simulations with ultracold quantum gases

Ultracold quantum gases offer a unique setting for quantum simulation of interacting many-body systems. The high degree of controllability, the novel detection possibilities and the extreme physical parameter regimes that can be reached in these ‘artificial solids’ provide an exciting complementary...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2012-04, Vol.8 (4), p.267-276
Main Authors: Bloch, Immanuel, Dalibard, Jean, Nascimbène, Sylvain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultracold quantum gases offer a unique setting for quantum simulation of interacting many-body systems. The high degree of controllability, the novel detection possibilities and the extreme physical parameter regimes that can be reached in these ‘artificial solids’ provide an exciting complementary set-up compared with natural condensed-matter systems, much in the spirit of Feynman’s vision of a quantum simulator. Here we review recent advances in technology and discuss progress in a number of areas where experimental results have already been obtained. Experiments with ultracold quantum gases provide a platform for creating many-body systems that can be well controlled and whose parameters can be tuned over a wide range. These properties put these systems in an ideal position for simulating problems that are out of reach for classical computers. This review surveys key advances in this field and discusses the possibilities offered by this approach to quantum simulation.
ISSN:1745-2473
1745-2481
1476-4636
DOI:10.1038/nphys2259