Loading…

A dynamical model of the sporadic meteoroid complex

Sporadic meteoroids are the most abundant yet least understood component of the Earth's meteoroid complex. This paper aims to build a physics-based model of this complex calibrated with five years of radar observations. The model of the sporadic meteoroid complex presented here includes the eff...

Full description

Saved in:
Bibliographic Details
Published in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2009-05, Vol.201 (1), p.295-310
Main Authors: Wiegert, Paul, Vaubaillon, Jeremie, Campbell-Brown, Margaret
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sporadic meteoroids are the most abundant yet least understood component of the Earth's meteoroid complex. This paper aims to build a physics-based model of this complex calibrated with five years of radar observations. The model of the sporadic meteoroid complex presented here includes the effects of the Sun and all eight planets, radiation forces and collisions. The model uses the observed meteor patrol radar strengths of the sporadic meteors to solve for the dust production rates of the populations of comets modeled, as well as the mass index. The model can explain some of the differences between the meteor velocity distributions seen by transverse versus radial scatter radars. The different ionization limits of the two techniques result in their looking at different populations with different velocity distributions. Radial scatter radars see primarily meteors from 55P/Tempel–Tuttle (or an orbitally similar lost comet), while transverse scatter radars are dominated by larger meteoroids from the Jupiter-family comets. In fact, our results suggest that the sporadic complex is better understood as originating from a small number of comets which transfer material to near-Earth space quite efficiently, rather than as a product of the cometary population as a whole. The model also sheds light on variations in the mass index reported by different radars, revealing it to be a result of their sampling different portions of the meteoroid population. In addition, we find that a mass index of s = 2.34 as observed at Earth requires a shallower index ( s = 2.2 ) at the time of meteoroid production because of size-dependent processes in the evolution of meteoroids. The model also reveals the origin of the 55° radius ring seen centered on the Earth's apex (a result of high-inclination meteoroids undergoing Kozai oscillation) and the central condensations seen in the apex sources, as well as providing insight into the strength asymmetry of the helion and anti-helion sources.
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2008.12.030