Loading…
Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy
The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are s...
Saved in:
Published in: | Journal of alloys and compounds 2022-11, Vol.920, p.166037, Article 166037 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13 |
container_end_page | |
container_issue | |
container_start_page | 166037 |
container_title | Journal of alloys and compounds |
container_volume | 920 |
creator | Diack-Rasselio, A. Rouleau, O. Coulomb, L. Georgeton, L. Beaudhuin, M. Crivello, J.-C. Alleno, E. |
description | The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92. |
doi_str_mv | 10.1016/j.jallcom.2022.166037 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03752661v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708391957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_glDwyYfWXNL8ehxD3WDgi_oa0ixlLVkzk1bYf29Lh3DHwd2H7919EXoEXAAG_tIWrfHehmNBMCEFcI6puEILkILmJefqGi2wIiyXVMpbdJdSizEGRWGBttuu9oPrrMtCnSXn6zwNVeqbfuib0GVj9Ac3ZTwG553tY2OzN0e-Vz7buCF5F7Nxezjfo5va-OQeLnWJvt5eP9ebfPfxvl2vdrktiexzVe4BnOGEMoBa1AwDdUxVoqwIrnhVc2mZ4ILuhWHGYAPVOLBqX4GVygJdoudZ92C8PsXmaOJZB9PozWqnp974PCOcw-_EPs3sKYafwaVet2GI3XieJgJLqkAxMVJspmwMKUVX_8sC1pPDutUXh_XksJ4dpn-cOHAU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708391957</pqid></control><display><type>article</type><title>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</title><source>ScienceDirect Freedom Collection</source><creator>Diack-Rasselio, A. ; Rouleau, O. ; Coulomb, L. ; Georgeton, L. ; Beaudhuin, M. ; Crivello, J.-C. ; Alleno, E.</creator><creatorcontrib>Diack-Rasselio, A. ; Rouleau, O. ; Coulomb, L. ; Georgeton, L. ; Beaudhuin, M. ; Crivello, J.-C. ; Alleno, E.</creatorcontrib><description>The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.166037</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Antisite defects ; Carrier density ; Chemical Sciences ; Crystal defects ; Cubic lattice ; Current carriers ; Density functional theory ; Electron transfer ; Figure of merit ; Heusler alloys ; Inorganic chemistry ; Material chemistry ; Mathematical analysis ; Parameters ; Power factor ; Solid solutions ; Stoichiometry ; Substitutes ; Thermal conductivity ; Thermoelectricity</subject><ispartof>Journal of alloys and compounds, 2022-11, Vol.920, p.166037, Article 166037</ispartof><rights>Copyright Elsevier BV Nov 5, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</citedby><cites>FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</cites><orcidid>0000-0002-4849-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-03752661$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Diack-Rasselio, A.</creatorcontrib><creatorcontrib>Rouleau, O.</creatorcontrib><creatorcontrib>Coulomb, L.</creatorcontrib><creatorcontrib>Georgeton, L.</creatorcontrib><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Crivello, J.-C.</creatorcontrib><creatorcontrib>Alleno, E.</creatorcontrib><title>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</title><title>Journal of alloys and compounds</title><description>The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.</description><subject>Antisite defects</subject><subject>Carrier density</subject><subject>Chemical Sciences</subject><subject>Crystal defects</subject><subject>Cubic lattice</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Figure of merit</subject><subject>Heusler alloys</subject><subject>Inorganic chemistry</subject><subject>Material chemistry</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Power factor</subject><subject>Solid solutions</subject><subject>Stoichiometry</subject><subject>Substitutes</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKd_glDwyYfWXNL8ehxD3WDgi_oa0ixlLVkzk1bYf29Lh3DHwd2H7919EXoEXAAG_tIWrfHehmNBMCEFcI6puEILkILmJefqGi2wIiyXVMpbdJdSizEGRWGBttuu9oPrrMtCnSXn6zwNVeqbfuib0GVj9Ac3ZTwG553tY2OzN0e-Vz7buCF5F7Nxezjfo5va-OQeLnWJvt5eP9ebfPfxvl2vdrktiexzVe4BnOGEMoBa1AwDdUxVoqwIrnhVc2mZ4ILuhWHGYAPVOLBqX4GVygJdoudZ92C8PsXmaOJZB9PozWqnp974PCOcw-_EPs3sKYafwaVet2GI3XieJgJLqkAxMVJspmwMKUVX_8sC1pPDutUXh_XksJ4dpn-cOHAU</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>Diack-Rasselio, A.</creator><creator>Rouleau, O.</creator><creator>Coulomb, L.</creator><creator>Georgeton, L.</creator><creator>Beaudhuin, M.</creator><creator>Crivello, J.-C.</creator><creator>Alleno, E.</creator><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4849-2556</orcidid></search><sort><creationdate>20221105</creationdate><title>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</title><author>Diack-Rasselio, A. ; Rouleau, O. ; Coulomb, L. ; Georgeton, L. ; Beaudhuin, M. ; Crivello, J.-C. ; Alleno, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antisite defects</topic><topic>Carrier density</topic><topic>Chemical Sciences</topic><topic>Crystal defects</topic><topic>Cubic lattice</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Figure of merit</topic><topic>Heusler alloys</topic><topic>Inorganic chemistry</topic><topic>Material chemistry</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Power factor</topic><topic>Solid solutions</topic><topic>Stoichiometry</topic><topic>Substitutes</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diack-Rasselio, A.</creatorcontrib><creatorcontrib>Rouleau, O.</creatorcontrib><creatorcontrib>Coulomb, L.</creatorcontrib><creatorcontrib>Georgeton, L.</creatorcontrib><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Crivello, J.-C.</creatorcontrib><creatorcontrib>Alleno, E.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diack-Rasselio, A.</au><au>Rouleau, O.</au><au>Coulomb, L.</au><au>Georgeton, L.</au><au>Beaudhuin, M.</au><au>Crivello, J.-C.</au><au>Alleno, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-11-05</date><risdate>2022</risdate><volume>920</volume><spage>166037</spage><pages>166037-</pages><artnum>166037</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2022.166037</doi><orcidid>https://orcid.org/0000-0002-4849-2556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2022-11, Vol.920, p.166037, Article 166037 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03752661v1 |
source | ScienceDirect Freedom Collection |
subjects | Antisite defects Carrier density Chemical Sciences Crystal defects Cubic lattice Current carriers Density functional theory Electron transfer Figure of merit Heusler alloys Inorganic chemistry Material chemistry Mathematical analysis Parameters Power factor Solid solutions Stoichiometry Substitutes Thermal conductivity Thermoelectricity |
title | Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20self-substitution%20on%20the%20thermoelectric%20Fe2VAl%20Heusler%20alloy&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Diack-Rasselio,%20A.&rft.date=2022-11-05&rft.volume=920&rft.spage=166037&rft.pages=166037-&rft.artnum=166037&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.166037&rft_dat=%3Cproquest_hal_p%3E2708391957%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708391957&rft_id=info:pmid/&rfr_iscdi=true |