Loading…

Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy

The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2022-11, Vol.920, p.166037, Article 166037
Main Authors: Diack-Rasselio, A., Rouleau, O., Coulomb, L., Georgeton, L., Beaudhuin, M., Crivello, J.-C., Alleno, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13
cites cdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13
container_end_page
container_issue
container_start_page 166037
container_title Journal of alloys and compounds
container_volume 920
creator Diack-Rasselio, A.
Rouleau, O.
Coulomb, L.
Georgeton, L.
Beaudhuin, M.
Crivello, J.-C.
Alleno, E.
description The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.
doi_str_mv 10.1016/j.jallcom.2022.166037
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03752661v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708391957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_glDwyYfWXNL8ehxD3WDgi_oa0ixlLVkzk1bYf29Lh3DHwd2H7919EXoEXAAG_tIWrfHehmNBMCEFcI6puEILkILmJefqGi2wIiyXVMpbdJdSizEGRWGBttuu9oPrrMtCnSXn6zwNVeqbfuib0GVj9Ac3ZTwG553tY2OzN0e-Vz7buCF5F7Nxezjfo5va-OQeLnWJvt5eP9ebfPfxvl2vdrktiexzVe4BnOGEMoBa1AwDdUxVoqwIrnhVc2mZ4ILuhWHGYAPVOLBqX4GVygJdoudZ92C8PsXmaOJZB9PozWqnp974PCOcw-_EPs3sKYafwaVet2GI3XieJgJLqkAxMVJspmwMKUVX_8sC1pPDutUXh_XksJ4dpn-cOHAU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708391957</pqid></control><display><type>article</type><title>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</title><source>ScienceDirect Freedom Collection</source><creator>Diack-Rasselio, A. ; Rouleau, O. ; Coulomb, L. ; Georgeton, L. ; Beaudhuin, M. ; Crivello, J.-C. ; Alleno, E.</creator><creatorcontrib>Diack-Rasselio, A. ; Rouleau, O. ; Coulomb, L. ; Georgeton, L. ; Beaudhuin, M. ; Crivello, J.-C. ; Alleno, E.</creatorcontrib><description>The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 &lt; x &lt; 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.166037</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Antisite defects ; Carrier density ; Chemical Sciences ; Crystal defects ; Cubic lattice ; Current carriers ; Density functional theory ; Electron transfer ; Figure of merit ; Heusler alloys ; Inorganic chemistry ; Material chemistry ; Mathematical analysis ; Parameters ; Power factor ; Solid solutions ; Stoichiometry ; Substitutes ; Thermal conductivity ; Thermoelectricity</subject><ispartof>Journal of alloys and compounds, 2022-11, Vol.920, p.166037, Article 166037</ispartof><rights>Copyright Elsevier BV Nov 5, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</citedby><cites>FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</cites><orcidid>0000-0002-4849-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-03752661$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Diack-Rasselio, A.</creatorcontrib><creatorcontrib>Rouleau, O.</creatorcontrib><creatorcontrib>Coulomb, L.</creatorcontrib><creatorcontrib>Georgeton, L.</creatorcontrib><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Crivello, J.-C.</creatorcontrib><creatorcontrib>Alleno, E.</creatorcontrib><title>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</title><title>Journal of alloys and compounds</title><description>The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 &lt; x &lt; 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.</description><subject>Antisite defects</subject><subject>Carrier density</subject><subject>Chemical Sciences</subject><subject>Crystal defects</subject><subject>Cubic lattice</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Figure of merit</subject><subject>Heusler alloys</subject><subject>Inorganic chemistry</subject><subject>Material chemistry</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Power factor</subject><subject>Solid solutions</subject><subject>Stoichiometry</subject><subject>Substitutes</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKd_glDwyYfWXNL8ehxD3WDgi_oa0ixlLVkzk1bYf29Lh3DHwd2H7919EXoEXAAG_tIWrfHehmNBMCEFcI6puEILkILmJefqGi2wIiyXVMpbdJdSizEGRWGBttuu9oPrrMtCnSXn6zwNVeqbfuib0GVj9Ac3ZTwG553tY2OzN0e-Vz7buCF5F7Nxezjfo5va-OQeLnWJvt5eP9ebfPfxvl2vdrktiexzVe4BnOGEMoBa1AwDdUxVoqwIrnhVc2mZ4ILuhWHGYAPVOLBqX4GVygJdoudZ92C8PsXmaOJZB9PozWqnp974PCOcw-_EPs3sKYafwaVet2GI3XieJgJLqkAxMVJspmwMKUVX_8sC1pPDutUXh_XksJ4dpn-cOHAU</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>Diack-Rasselio, A.</creator><creator>Rouleau, O.</creator><creator>Coulomb, L.</creator><creator>Georgeton, L.</creator><creator>Beaudhuin, M.</creator><creator>Crivello, J.-C.</creator><creator>Alleno, E.</creator><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4849-2556</orcidid></search><sort><creationdate>20221105</creationdate><title>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</title><author>Diack-Rasselio, A. ; Rouleau, O. ; Coulomb, L. ; Georgeton, L. ; Beaudhuin, M. ; Crivello, J.-C. ; Alleno, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antisite defects</topic><topic>Carrier density</topic><topic>Chemical Sciences</topic><topic>Crystal defects</topic><topic>Cubic lattice</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Figure of merit</topic><topic>Heusler alloys</topic><topic>Inorganic chemistry</topic><topic>Material chemistry</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Power factor</topic><topic>Solid solutions</topic><topic>Stoichiometry</topic><topic>Substitutes</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diack-Rasselio, A.</creatorcontrib><creatorcontrib>Rouleau, O.</creatorcontrib><creatorcontrib>Coulomb, L.</creatorcontrib><creatorcontrib>Georgeton, L.</creatorcontrib><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Crivello, J.-C.</creatorcontrib><creatorcontrib>Alleno, E.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diack-Rasselio, A.</au><au>Rouleau, O.</au><au>Coulomb, L.</au><au>Georgeton, L.</au><au>Beaudhuin, M.</au><au>Crivello, J.-C.</au><au>Alleno, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-11-05</date><risdate>2022</risdate><volume>920</volume><spage>166037</spage><pages>166037-</pages><artnum>166037</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 &lt; x &lt; 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with |x|. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2022.166037</doi><orcidid>https://orcid.org/0000-0002-4849-2556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-11, Vol.920, p.166037, Article 166037
issn 0925-8388
1873-4669
language eng
recordid cdi_hal_primary_oai_HAL_hal_03752661v1
source ScienceDirect Freedom Collection
subjects Antisite defects
Carrier density
Chemical Sciences
Crystal defects
Cubic lattice
Current carriers
Density functional theory
Electron transfer
Figure of merit
Heusler alloys
Inorganic chemistry
Material chemistry
Mathematical analysis
Parameters
Power factor
Solid solutions
Stoichiometry
Substitutes
Thermal conductivity
Thermoelectricity
title Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20self-substitution%20on%20the%20thermoelectric%20Fe2VAl%20Heusler%20alloy&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Diack-Rasselio,%20A.&rft.date=2022-11-05&rft.volume=920&rft.spage=166037&rft.pages=166037-&rft.artnum=166037&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.166037&rft_dat=%3Cproquest_hal_p%3E2708391957%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-94d11ea623511f7f5013e59b74b20b6bf68c57673d7a5aa0a1bb20c9db1c89c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708391957&rft_id=info:pmid/&rfr_iscdi=true