Loading…
Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries
All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulti...
Saved in:
Published in: | ACS energy letters 2022-09, Vol.7 (9), p.2979-2987 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783 |
---|---|
cites | cdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783 |
container_end_page | 2987 |
container_issue | 9 |
container_start_page | 2979 |
container_title | ACS energy letters |
container_volume | 7 |
creator | Koç, Tuncay Hallot, Maxime Quemin, Elisa Hennequart, Benjamin Dugas, Romain Abakumov, Artem M. Lethien, Christophe Tarascon, Jean-Marie |
description | All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs. |
doi_str_mv | 10.1021/acsenergylett.2c01668 |
format | article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03757740v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c292058931</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNT-BGGvHtLuZpMmOdZQrVDoofW8TJKJ3bLJls2qRP-8WxtETzKH-XregXkJueVsylnIZ1B22KJ96TU6Nw1Lxufz9IKMQpGyIOVZfPmrviaTrjsw5qE09jEinzvzDraim6NTjfoAp0xLTU3dHmm-x0aVoGdLjaWzphx6mpvm6MlCaeX6E70CrSqkW-MTHWjdO-yoaulC6-B7E2wdOKT34Bxahd0NuapBdzgZ8pg8Pyx3-SpYbx6f8sU6AJHFLuDA6xQ5RlmaRGFdsgQijBLGw6rgAsUcBIiojISfhFBXUNRVHGeIWVIIkaRiTO7Od_eg5dGqBmwvDSi5WqzlacZEEidJxN64Z-MzW1rTdRbrHwFn8mS4_GO4HAz3On7W-bU8mFfb-o_-0XwBVxWKxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Koç, Tuncay ; Hallot, Maxime ; Quemin, Elisa ; Hennequart, Benjamin ; Dugas, Romain ; Abakumov, Artem M. ; Lethien, Christophe ; Tarascon, Jean-Marie</creator><creatorcontrib>Koç, Tuncay ; Hallot, Maxime ; Quemin, Elisa ; Hennequart, Benjamin ; Dugas, Romain ; Abakumov, Artem M. ; Lethien, Christophe ; Tarascon, Jean-Marie</creatorcontrib><description>All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.2c01668</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Engineering Sciences</subject><ispartof>ACS energy letters, 2022-09, Vol.7 (9), p.2979-2987</ispartof><rights>2022 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</citedby><cites>FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</cites><orcidid>0000-0001-8906-8308 ; 0000-0002-4091-3192 ; 0000-0002-7135-4629 ; 0000-0002-7059-6845 ; 0000-0003-3617-3352 ; 0000-0002-3552-4475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03757740$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Koç, Tuncay</creatorcontrib><creatorcontrib>Hallot, Maxime</creatorcontrib><creatorcontrib>Quemin, Elisa</creatorcontrib><creatorcontrib>Hennequart, Benjamin</creatorcontrib><creatorcontrib>Dugas, Romain</creatorcontrib><creatorcontrib>Abakumov, Artem M.</creatorcontrib><creatorcontrib>Lethien, Christophe</creatorcontrib><creatorcontrib>Tarascon, Jean-Marie</creatorcontrib><title>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.</description><subject>Engineering Sciences</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsNT-BGGvHtLuZpMmOdZQrVDoofW8TJKJ3bLJls2qRP-8WxtETzKH-XregXkJueVsylnIZ1B22KJ96TU6Nw1Lxufz9IKMQpGyIOVZfPmrviaTrjsw5qE09jEinzvzDraim6NTjfoAp0xLTU3dHmm-x0aVoGdLjaWzphx6mpvm6MlCaeX6E70CrSqkW-MTHWjdO-yoaulC6-B7E2wdOKT34Bxahd0NuapBdzgZ8pg8Pyx3-SpYbx6f8sU6AJHFLuDA6xQ5RlmaRGFdsgQijBLGw6rgAsUcBIiojISfhFBXUNRVHGeIWVIIkaRiTO7Od_eg5dGqBmwvDSi5WqzlacZEEidJxN64Z-MzW1rTdRbrHwFn8mS4_GO4HAz3On7W-bU8mFfb-o_-0XwBVxWKxg</recordid><startdate>20220909</startdate><enddate>20220909</enddate><creator>Koç, Tuncay</creator><creator>Hallot, Maxime</creator><creator>Quemin, Elisa</creator><creator>Hennequart, Benjamin</creator><creator>Dugas, Romain</creator><creator>Abakumov, Artem M.</creator><creator>Lethien, Christophe</creator><creator>Tarascon, Jean-Marie</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8906-8308</orcidid><orcidid>https://orcid.org/0000-0002-4091-3192</orcidid><orcidid>https://orcid.org/0000-0002-7135-4629</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0003-3617-3352</orcidid><orcidid>https://orcid.org/0000-0002-3552-4475</orcidid></search><sort><creationdate>20220909</creationdate><title>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</title><author>Koç, Tuncay ; Hallot, Maxime ; Quemin, Elisa ; Hennequart, Benjamin ; Dugas, Romain ; Abakumov, Artem M. ; Lethien, Christophe ; Tarascon, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Koç, Tuncay</creatorcontrib><creatorcontrib>Hallot, Maxime</creatorcontrib><creatorcontrib>Quemin, Elisa</creatorcontrib><creatorcontrib>Hennequart, Benjamin</creatorcontrib><creatorcontrib>Dugas, Romain</creatorcontrib><creatorcontrib>Abakumov, Artem M.</creatorcontrib><creatorcontrib>Lethien, Christophe</creatorcontrib><creatorcontrib>Tarascon, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koç, Tuncay</au><au>Hallot, Maxime</au><au>Quemin, Elisa</au><au>Hennequart, Benjamin</au><au>Dugas, Romain</au><au>Abakumov, Artem M.</au><au>Lethien, Christophe</au><au>Tarascon, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2022-09-09</date><risdate>2022</risdate><volume>7</volume><issue>9</issue><spage>2979</spage><epage>2987</epage><pages>2979-2987</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.2c01668</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8906-8308</orcidid><orcidid>https://orcid.org/0000-0002-4091-3192</orcidid><orcidid>https://orcid.org/0000-0002-7135-4629</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0003-3617-3352</orcidid><orcidid>https://orcid.org/0000-0002-3552-4475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2022-09, Vol.7 (9), p.2979-2987 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03757740v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Engineering Sciences |
title | Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Optimization%20of%20the%20Chemical/Electrochemical%20Compatibility%20of%20Halide%20Solid%20Electrolytes%20in%20All-Solid-State%20Batteries&rft.jtitle=ACS%20energy%20letters&rft.au=Koc%CC%A7,%20Tuncay&rft.date=2022-09-09&rft.volume=7&rft.issue=9&rft.spage=2979&rft.epage=2987&rft.pages=2979-2987&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.2c01668&rft_dat=%3Cacs_hal_p%3Ec292058931%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |