Loading…

Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries

All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulti...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2022-09, Vol.7 (9), p.2979-2987
Main Authors: Koç, Tuncay, Hallot, Maxime, Quemin, Elisa, Hennequart, Benjamin, Dugas, Romain, Abakumov, Artem M., Lethien, Christophe, Tarascon, Jean-Marie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783
cites cdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783
container_end_page 2987
container_issue 9
container_start_page 2979
container_title ACS energy letters
container_volume 7
creator Koç, Tuncay
Hallot, Maxime
Quemin, Elisa
Hennequart, Benjamin
Dugas, Romain
Abakumov, Artem M.
Lethien, Christophe
Tarascon, Jean-Marie
description All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2­Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.
doi_str_mv 10.1021/acsenergylett.2c01668
format article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03757740v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c292058931</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNT-BGGvHtLuZpMmOdZQrVDoofW8TJKJ3bLJls2qRP-8WxtETzKH-XregXkJueVsylnIZ1B22KJ96TU6Nw1Lxufz9IKMQpGyIOVZfPmrviaTrjsw5qE09jEinzvzDraim6NTjfoAp0xLTU3dHmm-x0aVoGdLjaWzphx6mpvm6MlCaeX6E70CrSqkW-MTHWjdO-yoaulC6-B7E2wdOKT34Bxahd0NuapBdzgZ8pg8Pyx3-SpYbx6f8sU6AJHFLuDA6xQ5RlmaRGFdsgQijBLGw6rgAsUcBIiojISfhFBXUNRVHGeIWVIIkaRiTO7Od_eg5dGqBmwvDSi5WqzlacZEEidJxN64Z-MzW1rTdRbrHwFn8mS4_GO4HAz3On7W-bU8mFfb-o_-0XwBVxWKxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Koç, Tuncay ; Hallot, Maxime ; Quemin, Elisa ; Hennequart, Benjamin ; Dugas, Romain ; Abakumov, Artem M. ; Lethien, Christophe ; Tarascon, Jean-Marie</creator><creatorcontrib>Koç, Tuncay ; Hallot, Maxime ; Quemin, Elisa ; Hennequart, Benjamin ; Dugas, Romain ; Abakumov, Artem M. ; Lethien, Christophe ; Tarascon, Jean-Marie</creatorcontrib><description>All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2­Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.2c01668</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Engineering Sciences</subject><ispartof>ACS energy letters, 2022-09, Vol.7 (9), p.2979-2987</ispartof><rights>2022 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</citedby><cites>FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</cites><orcidid>0000-0001-8906-8308 ; 0000-0002-4091-3192 ; 0000-0002-7135-4629 ; 0000-0002-7059-6845 ; 0000-0003-3617-3352 ; 0000-0002-3552-4475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03757740$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Koç, Tuncay</creatorcontrib><creatorcontrib>Hallot, Maxime</creatorcontrib><creatorcontrib>Quemin, Elisa</creatorcontrib><creatorcontrib>Hennequart, Benjamin</creatorcontrib><creatorcontrib>Dugas, Romain</creatorcontrib><creatorcontrib>Abakumov, Artem M.</creatorcontrib><creatorcontrib>Lethien, Christophe</creatorcontrib><creatorcontrib>Tarascon, Jean-Marie</creatorcontrib><title>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2­Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.</description><subject>Engineering Sciences</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsNT-BGGvHtLuZpMmOdZQrVDoofW8TJKJ3bLJls2qRP-8WxtETzKH-XregXkJueVsylnIZ1B22KJ96TU6Nw1Lxufz9IKMQpGyIOVZfPmrviaTrjsw5qE09jEinzvzDraim6NTjfoAp0xLTU3dHmm-x0aVoGdLjaWzphx6mpvm6MlCaeX6E70CrSqkW-MTHWjdO-yoaulC6-B7E2wdOKT34Bxahd0NuapBdzgZ8pg8Pyx3-SpYbx6f8sU6AJHFLuDA6xQ5RlmaRGFdsgQijBLGw6rgAsUcBIiojISfhFBXUNRVHGeIWVIIkaRiTO7Od_eg5dGqBmwvDSi5WqzlacZEEidJxN64Z-MzW1rTdRbrHwFn8mS4_GO4HAz3On7W-bU8mFfb-o_-0XwBVxWKxg</recordid><startdate>20220909</startdate><enddate>20220909</enddate><creator>Koç, Tuncay</creator><creator>Hallot, Maxime</creator><creator>Quemin, Elisa</creator><creator>Hennequart, Benjamin</creator><creator>Dugas, Romain</creator><creator>Abakumov, Artem M.</creator><creator>Lethien, Christophe</creator><creator>Tarascon, Jean-Marie</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8906-8308</orcidid><orcidid>https://orcid.org/0000-0002-4091-3192</orcidid><orcidid>https://orcid.org/0000-0002-7135-4629</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0003-3617-3352</orcidid><orcidid>https://orcid.org/0000-0002-3552-4475</orcidid></search><sort><creationdate>20220909</creationdate><title>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</title><author>Koç, Tuncay ; Hallot, Maxime ; Quemin, Elisa ; Hennequart, Benjamin ; Dugas, Romain ; Abakumov, Artem M. ; Lethien, Christophe ; Tarascon, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Koç, Tuncay</creatorcontrib><creatorcontrib>Hallot, Maxime</creatorcontrib><creatorcontrib>Quemin, Elisa</creatorcontrib><creatorcontrib>Hennequart, Benjamin</creatorcontrib><creatorcontrib>Dugas, Romain</creatorcontrib><creatorcontrib>Abakumov, Artem M.</creatorcontrib><creatorcontrib>Lethien, Christophe</creatorcontrib><creatorcontrib>Tarascon, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koç, Tuncay</au><au>Hallot, Maxime</au><au>Quemin, Elisa</au><au>Hennequart, Benjamin</au><au>Dugas, Romain</au><au>Abakumov, Artem M.</au><au>Lethien, Christophe</au><au>Tarascon, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2022-09-09</date><risdate>2022</risdate><volume>7</volume><issue>9</issue><spage>2979</spage><epage>2987</epage><pages>2979-2987</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or Li x In y negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2­Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.2c01668</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8906-8308</orcidid><orcidid>https://orcid.org/0000-0002-4091-3192</orcidid><orcidid>https://orcid.org/0000-0002-7135-4629</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0003-3617-3352</orcidid><orcidid>https://orcid.org/0000-0002-3552-4475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2022-09, Vol.7 (9), p.2979-2987
issn 2380-8195
2380-8195
language eng
recordid cdi_hal_primary_oai_HAL_hal_03757740v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Engineering Sciences
title Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Optimization%20of%20the%20Chemical/Electrochemical%20Compatibility%20of%20Halide%20Solid%20Electrolytes%20in%20All-Solid-State%20Batteries&rft.jtitle=ACS%20energy%20letters&rft.au=Koc%CC%A7,%20Tuncay&rft.date=2022-09-09&rft.volume=7&rft.issue=9&rft.spage=2979&rft.epage=2987&rft.pages=2979-2987&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.2c01668&rft_dat=%3Cacs_hal_p%3Ec292058931%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a395t-1a1f8e1e498742fc07a4e47012db13e36a3a34c430122afdabfd559ee97b33783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true