Loading…

Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity

Solid-state batteries are seen as key to the development of safer and higher-energy-density batteries, by limiting flammability and enabling the use of the lithium metal anode, respectively. Composite polymer–ceramic electrolytes are a possible solution for their realization, by benefiting from the...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2022-12, Vol.21 (12), p.1412-1418
Main Authors: Isaac, James A., Devaux, Didier, Bouchet, Renaud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid-state batteries are seen as key to the development of safer and higher-energy-density batteries, by limiting flammability and enabling the use of the lithium metal anode, respectively. Composite polymer–ceramic electrolytes are a possible solution for their realization, by benefiting from the combined mechanical properties of the polymer electrolyte and the thermal stability and high conductivity of the ceramic electrolyte. In this study we used different liquid electrolyte chemistries as models for the polymer electrolytes, and evaluated the effect of adding a variety of porous and dense ceramic electrolytes on the conductivity. All the results could be modelled with the effective medium theory, allowing prediction of the conductivity of electrolyte combinations. We unambiguously determined that highly conductive porous particles act as insulators in such systems, whereas dense particles act as conductors, thereby advancing our understanding of composite electrolyte conductivity. Solid-state electrolytes are key to the development of safer and higher-energy-density batteries. Using liquid electrolyte chemistries as models for polymer electrolytes, the effect of adding a variety of porous and dense ceramic electrolytes on the conductivity is now investigated.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-022-01343-w