Loading…
The bidomain problem as a gradient system
We consider a general, nonlinear version of the bidomain system. Using the gradient structure of this system, but also the notion of j-subgradient, we prove wellposedness of the bidomain system in the energy space and provide first numerical experiments.
Saved in:
Published in: | Journal of Differential Equations 2020-05, Vol.268 (11), p.6598-6610 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-11f13a4fb2422de123a61e5a3d9ee9be05ab98fed4aaf8edd2cfcf65359b9c703 |
container_end_page | 6610 |
container_issue | 11 |
container_start_page | 6598 |
container_title | Journal of Differential Equations |
container_volume | 268 |
creator | Belhachmi, Zakaria Chill, Ralph |
description | We consider a general, nonlinear version of the bidomain system. Using the gradient structure of this system, but also the notion of j-subgradient, we prove wellposedness of the bidomain system in the energy space and provide first numerical experiments. |
doi_str_mv | 10.1016/j.jde.2019.11.042 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03814381v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039619305765</els_id><sourcerecordid>S0022039619305765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-11f13a4fb2422de123a61e5a3d9ee9be05ab98fed4aaf8edd2cfcf65359b9c703</originalsourceid><addsrcrecordid>eNp9kE1rwzAMhs3YYF23H7Bbrj0kk-wkrdmplH1BYZfubBRbXh2aptih0H-_lI4ddxAC8T6C9xHiEaFAwPqpLVrHhQTUBWIBpbwSEwQNuZwreS0mAFLmoHR9K-5SagEQq7qaiNlmy1kTXN9R2GeH2Dc77jJKGWXfkVzg_ZClUxq4uxc3nnaJH373VHy9vmxW7_n68-1jtVznVsl6yBE9Kip9I0spHaNUVCNXpJxm1g1DRY1eeHYlkV-wc9J66-tKVbrRdg5qKmaXv1vamUMMHcWT6SmY9-XanG-gFliOc8Qxi5esjX1Kkf0fgGDOXkxrRi_m7MUgmtHLyDxfGB5LHANHk-xY07ILke1gXB_-oX8A_Chp7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The bidomain problem as a gradient system</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Belhachmi, Zakaria ; Chill, Ralph</creator><creatorcontrib>Belhachmi, Zakaria ; Chill, Ralph</creatorcontrib><description>We consider a general, nonlinear version of the bidomain system. Using the gradient structure of this system, but also the notion of j-subgradient, we prove wellposedness of the bidomain system in the energy space and provide first numerical experiments.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2019.11.042</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bidomain problem ; FitzHugh-Nagumo model ; General Mathematics ; Gradient system ; j-subgradient ; Mathematics</subject><ispartof>Journal of Differential Equations, 2020-05, Vol.268 (11), p.6598-6610</ispartof><rights>2019 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-11f13a4fb2422de123a61e5a3d9ee9be05ab98fed4aaf8edd2cfcf65359b9c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03814381$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belhachmi, Zakaria</creatorcontrib><creatorcontrib>Chill, Ralph</creatorcontrib><title>The bidomain problem as a gradient system</title><title>Journal of Differential Equations</title><description>We consider a general, nonlinear version of the bidomain system. Using the gradient structure of this system, but also the notion of j-subgradient, we prove wellposedness of the bidomain system in the energy space and provide first numerical experiments.</description><subject>Bidomain problem</subject><subject>FitzHugh-Nagumo model</subject><subject>General Mathematics</subject><subject>Gradient system</subject><subject>j-subgradient</subject><subject>Mathematics</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rwzAMhs3YYF23H7Bbrj0kk-wkrdmplH1BYZfubBRbXh2aptih0H-_lI4ddxAC8T6C9xHiEaFAwPqpLVrHhQTUBWIBpbwSEwQNuZwreS0mAFLmoHR9K-5SagEQq7qaiNlmy1kTXN9R2GeH2Dc77jJKGWXfkVzg_ZClUxq4uxc3nnaJH373VHy9vmxW7_n68-1jtVznVsl6yBE9Kip9I0spHaNUVCNXpJxm1g1DRY1eeHYlkV-wc9J66-tKVbrRdg5qKmaXv1vamUMMHcWT6SmY9-XanG-gFliOc8Qxi5esjX1Kkf0fgGDOXkxrRi_m7MUgmtHLyDxfGB5LHANHk-xY07ILke1gXB_-oX8A_Chp7w</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Belhachmi, Zakaria</creator><creator>Chill, Ralph</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20200515</creationdate><title>The bidomain problem as a gradient system</title><author>Belhachmi, Zakaria ; Chill, Ralph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-11f13a4fb2422de123a61e5a3d9ee9be05ab98fed4aaf8edd2cfcf65359b9c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bidomain problem</topic><topic>FitzHugh-Nagumo model</topic><topic>General Mathematics</topic><topic>Gradient system</topic><topic>j-subgradient</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belhachmi, Zakaria</creatorcontrib><creatorcontrib>Chill, Ralph</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belhachmi, Zakaria</au><au>Chill, Ralph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The bidomain problem as a gradient system</atitle><jtitle>Journal of Differential Equations</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>268</volume><issue>11</issue><spage>6598</spage><epage>6610</epage><pages>6598-6610</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We consider a general, nonlinear version of the bidomain system. Using the gradient structure of this system, but also the notion of j-subgradient, we prove wellposedness of the bidomain system in the energy space and provide first numerical experiments.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2019.11.042</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0396 |
ispartof | Journal of Differential Equations, 2020-05, Vol.268 (11), p.6598-6610 |
issn | 0022-0396 1090-2732 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03814381v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bidomain problem FitzHugh-Nagumo model General Mathematics Gradient system j-subgradient Mathematics |
title | The bidomain problem as a gradient system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20bidomain%20problem%20as%20a%20gradient%20system&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Belhachmi,%20Zakaria&rft.date=2020-05-15&rft.volume=268&rft.issue=11&rft.spage=6598&rft.epage=6610&rft.pages=6598-6610&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2019.11.042&rft_dat=%3Celsevier_hal_p%3ES0022039619305765%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-11f13a4fb2422de123a61e5a3d9ee9be05ab98fed4aaf8edd2cfcf65359b9c703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |