Loading…
A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR)
Biosensing approaches that combine small, engineered antibodies (nanobodies) with nanoparticles are often complicated. Here, we show that nanobodies with different C‐terminal tags can be efficiently attached to a range of the most widely used biocompatible semiconductor quantum dots (QDs). Direct im...
Saved in:
Published in: | Angewandte Chemie International Edition 2022-08, Vol.61 (33), p.e202207797-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biosensing approaches that combine small, engineered antibodies (nanobodies) with nanoparticles are often complicated. Here, we show that nanobodies with different C‐terminal tags can be efficiently attached to a range of the most widely used biocompatible semiconductor quantum dots (QDs). Direct implementation into simplified assay formats was demonstrated by designing a rapid and wash‐free mix‐and‐measure immunoassay for the epidermal growth factor receptor (EGFR). Terbium complex (Tb)‐labeled hexahistidine‐tagged nanobodies were specifically displaced from QD surfaces via EGFR‐nanobody binding, leading to an EGFR concentration‐dependent decrease of the Tb‐to‐QD Förster resonance energy transfer (FRET) signal. The detection limit of 80±20 pM (16±4 ng mL−1) was 3‐fold lower than the clinical cut‐off concentration for soluble EGFR and up to 10‐fold lower compared to conventional sandwich FRET assays that required a pair of different nanobodies.
Simple is powerful: Terbium complexes labeled with hexahistidine‐tagged nanobodies were displaced from quantum dots via EGFR‐nanobody binding. This simple concept resulted in a rapid and wash‐free single‐nanobody FRET immunoassay with picomolar limits of detection. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202207797 |