Loading…

Investigating Pore‐Opening of Hydrogel Foams at the Scale of Freestanding Thin Films

Controlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore‐opening processes remain poorly understood, re...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular rapid communications. 2022-09, Vol.43 (17), p.e2200189-n/a
Main Authors: Andrieux, Sébastien, Patil, Mayur, Jacomine, Leandro, Hourlier‐Fargette, Aurélie, Heitkam, Sascha, Drenckhan, Wiebke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83
cites cdi_FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83
container_end_page n/a
container_issue 17
container_start_page e2200189
container_title Macromolecular rapid communications.
container_volume 43
creator Andrieux, Sébastien
Patil, Mayur
Jacomine, Leandro
Hourlier‐Fargette, Aurélie
Heitkam, Sascha
Drenckhan, Wiebke
description Controlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore‐opening processes remain poorly understood, requiring tedious trial‐and‐error procedures for property optimization. This lack of understanding is partly explained by the high complexity of the different interrelated, multiscale processes which take place as the foam transforms from an initially fluid foam into a solid foam. To progress in this field, this work takes inspiration from long‐standing research on liquid foams and thin films to develop model experiments in a microfluidic “Thin Film Pressure Balance.” These experiments allow the investigation of isolated thin films under well‐controlled environmental conditions reproducing those arising within a foam undergoing cross‐linking and drying. Using the example of alginate hydrogel films, the evolution of isolated thin films undergoing gelation and drying is correlated with the evolution of the rheological properties of the same alginate solution in bulk. The overall approach is introduced and a first set of results is presented to propose a starting point for the phenomenological description of the different types of pore‐opening processes and the classification of the resulting pore‐opening types. This paper describes a novel method for the investigation of pore‐opening mechanisms in hydrogel foams. The experiment introduced here relies on the study of the thinning and rupture behavior of gelling freestanding thin films using a microfluidic thin‐film pressure balance.
doi_str_mv 10.1002/marc.202200189
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03815215v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665563425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0E4r1lHYkNLFLGYztOllVFKVIRiNfWcl2nDUrjYrdF3fEJfCNfgqMikNiwsn197mjmDiEnFDoUAC9m2psOAiIAzYstsk8F0pQVKLfjPeopZSzbIwchvABAzgF3yR4TQhYc2T55vm5WNiyqiV5UzSS5c95-vn_czm3TPl2ZDNZj7ya2TvpOz0KiF8liapMHo2vbfve9jXbdjFv8cVo1Sb-qZ-GI7JS6Dvb4-zwkT_3Lx94gHd5eXfe6w9Rw5EUq0IwzCTw3CDwTTFqkVNJslFmJ0soSNGfcwKjkXI5NMcJiRGVe5sIaI3XODsn5pu5U12ruqxjHWjldqUF3qFoNWN4mIlY0smcbdu7d6zJ2rWZVMLaudWPdMijMMiEyxlFE9PQP-uKWvomTKJRt7sCQR6qzoYx3IXhb_nRAQbWUarejfrYTDcXG8FbVdv0PrW66971f7xdfZ4-i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710020324</pqid></control><display><type>article</type><title>Investigating Pore‐Opening of Hydrogel Foams at the Scale of Freestanding Thin Films</title><source>Wiley</source><creator>Andrieux, Sébastien ; Patil, Mayur ; Jacomine, Leandro ; Hourlier‐Fargette, Aurélie ; Heitkam, Sascha ; Drenckhan, Wiebke</creator><creatorcontrib>Andrieux, Sébastien ; Patil, Mayur ; Jacomine, Leandro ; Hourlier‐Fargette, Aurélie ; Heitkam, Sascha ; Drenckhan, Wiebke</creatorcontrib><description>Controlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore‐opening processes remain poorly understood, requiring tedious trial‐and‐error procedures for property optimization. This lack of understanding is partly explained by the high complexity of the different interrelated, multiscale processes which take place as the foam transforms from an initially fluid foam into a solid foam. To progress in this field, this work takes inspiration from long‐standing research on liquid foams and thin films to develop model experiments in a microfluidic “Thin Film Pressure Balance.” These experiments allow the investigation of isolated thin films under well‐controlled environmental conditions reproducing those arising within a foam undergoing cross‐linking and drying. Using the example of alginate hydrogel films, the evolution of isolated thin films undergoing gelation and drying is correlated with the evolution of the rheological properties of the same alginate solution in bulk. The overall approach is introduced and a first set of results is presented to propose a starting point for the phenomenological description of the different types of pore‐opening processes and the classification of the resulting pore‐opening types. This paper describes a novel method for the investigation of pore‐opening mechanisms in hydrogel foams. The experiment introduced here relies on the study of the thinning and rupture behavior of gelling freestanding thin films using a microfluidic thin‐film pressure balance.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202200189</identifier><identifier>PMID: 35579423</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic insulation ; alginate ; Alginates ; Alginic acid ; Drying ; Environmental conditions ; Evolution ; film rupture ; Foams ; free‐standing thin films ; hydrogel foams ; Hydrogels ; Microfluidics ; Optimization ; Physics ; Plastic foam ; Polymers ; pore‐opening ; Rheological properties ; Thermal insulation ; Thin films ; Tissue engineering</subject><ispartof>Macromolecular rapid communications., 2022-09, Vol.43 (17), p.e2200189-n/a</ispartof><rights>2022 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83</citedby><cites>FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83</cites><orcidid>0000-0002-9176-3294 ; 0000-0002-2493-7629 ; 0000-0002-0148-4145 ; 0000-0002-3879-4956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03815215$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrieux, Sébastien</creatorcontrib><creatorcontrib>Patil, Mayur</creatorcontrib><creatorcontrib>Jacomine, Leandro</creatorcontrib><creatorcontrib>Hourlier‐Fargette, Aurélie</creatorcontrib><creatorcontrib>Heitkam, Sascha</creatorcontrib><creatorcontrib>Drenckhan, Wiebke</creatorcontrib><title>Investigating Pore‐Opening of Hydrogel Foams at the Scale of Freestanding Thin Films</title><title>Macromolecular rapid communications.</title><description>Controlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore‐opening processes remain poorly understood, requiring tedious trial‐and‐error procedures for property optimization. This lack of understanding is partly explained by the high complexity of the different interrelated, multiscale processes which take place as the foam transforms from an initially fluid foam into a solid foam. To progress in this field, this work takes inspiration from long‐standing research on liquid foams and thin films to develop model experiments in a microfluidic “Thin Film Pressure Balance.” These experiments allow the investigation of isolated thin films under well‐controlled environmental conditions reproducing those arising within a foam undergoing cross‐linking and drying. Using the example of alginate hydrogel films, the evolution of isolated thin films undergoing gelation and drying is correlated with the evolution of the rheological properties of the same alginate solution in bulk. The overall approach is introduced and a first set of results is presented to propose a starting point for the phenomenological description of the different types of pore‐opening processes and the classification of the resulting pore‐opening types. This paper describes a novel method for the investigation of pore‐opening mechanisms in hydrogel foams. The experiment introduced here relies on the study of the thinning and rupture behavior of gelling freestanding thin films using a microfluidic thin‐film pressure balance.</description><subject>Acoustic insulation</subject><subject>alginate</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Drying</subject><subject>Environmental conditions</subject><subject>Evolution</subject><subject>film rupture</subject><subject>Foams</subject><subject>free‐standing thin films</subject><subject>hydrogel foams</subject><subject>Hydrogels</subject><subject>Microfluidics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Plastic foam</subject><subject>Polymers</subject><subject>pore‐opening</subject><subject>Rheological properties</subject><subject>Thermal insulation</subject><subject>Thin films</subject><subject>Tissue engineering</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkctOwzAQRS0E4r1lHYkNLFLGYztOllVFKVIRiNfWcl2nDUrjYrdF3fEJfCNfgqMikNiwsn197mjmDiEnFDoUAC9m2psOAiIAzYstsk8F0pQVKLfjPeopZSzbIwchvABAzgF3yR4TQhYc2T55vm5WNiyqiV5UzSS5c95-vn_czm3TPl2ZDNZj7ya2TvpOz0KiF8liapMHo2vbfve9jXbdjFv8cVo1Sb-qZ-GI7JS6Dvb4-zwkT_3Lx94gHd5eXfe6w9Rw5EUq0IwzCTw3CDwTTFqkVNJslFmJ0soSNGfcwKjkXI5NMcJiRGVe5sIaI3XODsn5pu5U12ruqxjHWjldqUF3qFoNWN4mIlY0smcbdu7d6zJ2rWZVMLaudWPdMijMMiEyxlFE9PQP-uKWvomTKJRt7sCQR6qzoYx3IXhb_nRAQbWUarejfrYTDcXG8FbVdv0PrW66971f7xdfZ4-i</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Andrieux, Sébastien</creator><creator>Patil, Mayur</creator><creator>Jacomine, Leandro</creator><creator>Hourlier‐Fargette, Aurélie</creator><creator>Heitkam, Sascha</creator><creator>Drenckhan, Wiebke</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9176-3294</orcidid><orcidid>https://orcid.org/0000-0002-2493-7629</orcidid><orcidid>https://orcid.org/0000-0002-0148-4145</orcidid><orcidid>https://orcid.org/0000-0002-3879-4956</orcidid></search><sort><creationdate>202209</creationdate><title>Investigating Pore‐Opening of Hydrogel Foams at the Scale of Freestanding Thin Films</title><author>Andrieux, Sébastien ; Patil, Mayur ; Jacomine, Leandro ; Hourlier‐Fargette, Aurélie ; Heitkam, Sascha ; Drenckhan, Wiebke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic insulation</topic><topic>alginate</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Drying</topic><topic>Environmental conditions</topic><topic>Evolution</topic><topic>film rupture</topic><topic>Foams</topic><topic>free‐standing thin films</topic><topic>hydrogel foams</topic><topic>Hydrogels</topic><topic>Microfluidics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Plastic foam</topic><topic>Polymers</topic><topic>pore‐opening</topic><topic>Rheological properties</topic><topic>Thermal insulation</topic><topic>Thin films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrieux, Sébastien</creatorcontrib><creatorcontrib>Patil, Mayur</creatorcontrib><creatorcontrib>Jacomine, Leandro</creatorcontrib><creatorcontrib>Hourlier‐Fargette, Aurélie</creatorcontrib><creatorcontrib>Heitkam, Sascha</creatorcontrib><creatorcontrib>Drenckhan, Wiebke</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrieux, Sébastien</au><au>Patil, Mayur</au><au>Jacomine, Leandro</au><au>Hourlier‐Fargette, Aurélie</au><au>Heitkam, Sascha</au><au>Drenckhan, Wiebke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Pore‐Opening of Hydrogel Foams at the Scale of Freestanding Thin Films</atitle><jtitle>Macromolecular rapid communications.</jtitle><date>2022-09</date><risdate>2022</risdate><volume>43</volume><issue>17</issue><spage>e2200189</spage><epage>n/a</epage><pages>e2200189-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Controlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore‐opening processes remain poorly understood, requiring tedious trial‐and‐error procedures for property optimization. This lack of understanding is partly explained by the high complexity of the different interrelated, multiscale processes which take place as the foam transforms from an initially fluid foam into a solid foam. To progress in this field, this work takes inspiration from long‐standing research on liquid foams and thin films to develop model experiments in a microfluidic “Thin Film Pressure Balance.” These experiments allow the investigation of isolated thin films under well‐controlled environmental conditions reproducing those arising within a foam undergoing cross‐linking and drying. Using the example of alginate hydrogel films, the evolution of isolated thin films undergoing gelation and drying is correlated with the evolution of the rheological properties of the same alginate solution in bulk. The overall approach is introduced and a first set of results is presented to propose a starting point for the phenomenological description of the different types of pore‐opening processes and the classification of the resulting pore‐opening types. This paper describes a novel method for the investigation of pore‐opening mechanisms in hydrogel foams. The experiment introduced here relies on the study of the thinning and rupture behavior of gelling freestanding thin films using a microfluidic thin‐film pressure balance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35579423</pmid><doi>10.1002/marc.202200189</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9176-3294</orcidid><orcidid>https://orcid.org/0000-0002-2493-7629</orcidid><orcidid>https://orcid.org/0000-0002-0148-4145</orcidid><orcidid>https://orcid.org/0000-0002-3879-4956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2022-09, Vol.43 (17), p.e2200189-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_hal_primary_oai_HAL_hal_03815215v1
source Wiley
subjects Acoustic insulation
alginate
Alginates
Alginic acid
Drying
Environmental conditions
Evolution
film rupture
Foams
free‐standing thin films
hydrogel foams
Hydrogels
Microfluidics
Optimization
Physics
Plastic foam
Polymers
pore‐opening
Rheological properties
Thermal insulation
Thin films
Tissue engineering
title Investigating Pore‐Opening of Hydrogel Foams at the Scale of Freestanding Thin Films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Pore%E2%80%90Opening%20of%20Hydrogel%20Foams%20at%20the%20Scale%20of%20Freestanding%20Thin%20Films&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Andrieux,%20S%C3%A9bastien&rft.date=2022-09&rft.volume=43&rft.issue=17&rft.spage=e2200189&rft.epage=n/a&rft.pages=e2200189-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202200189&rft_dat=%3Cproquest_hal_p%3E2665563425%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4249-52cd67048c2046537e211716b6e727e7f0a434c0bf447dc9b29b178f85ecc7a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2710020324&rft_id=info:pmid/35579423&rfr_iscdi=true