Loading…

Learning local depth regression from defocus blur by soft-assignment encoding

We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the con...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2022-10, Vol.61 (29), p.8843
Main Authors: Leroy, Rémy, Trouvé-Peloux, Pauline, Le Saux, Bertrand, Buat, Benjamin, Champagnat, Frédéric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3
cites cdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3
container_end_page
container_issue 29
container_start_page 8843
container_title Applied optics (2004)
container_volume 61
creator Leroy, Rémy
Trouvé-Peloux, Pauline
Le Saux, Bertrand
Buat, Benjamin
Champagnat, Frédéric
description We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.
doi_str_mv 10.1364/AO.471105
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03847366v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725645237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</originalsourceid><addsrcrecordid>eNpFkM1KAzEURoMoWKsL3yDgysXUZDL5Ww5FrTDSjYK7kMkk7ZRpUpMZoW9vpKKbey8fh8PlA-AWowUmrHqo14uKY4zoGZiVmNKCYEbPwSyfssCl-LgEVyntECK0knwGXhuro-_9Bg7B6AF29jBuYbSbaFPqg4cuhn1OXTBTgu0wRdgeYQpuLHQGNn5v_QitN6HLkmtw4fSQ7M3vnoP3p8e35apo1s8vy7opDKFyLLgpDXOCopZLQTppWk4lY8IYy0xHUIWRwVVmCZOt1CIPi5FzWBisaWvIHNyfvFs9qEPs9zoeVdC9WtWN-skQERUnjH3hzN6d2EMMn5NNo9qFKfr8nip5SVlFS8L_jSaGlKJ1f1qM1E-zql6rU7PkG3QQah0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725645237</pqid></control><display><type>article</type><title>Learning local depth regression from defocus blur by soft-assignment encoding</title><source>Optica Publishing Group Journals (Optical Society)</source><creator>Leroy, Rémy ; Trouvé-Peloux, Pauline ; Le Saux, Bertrand ; Buat, Benjamin ; Champagnat, Frédéric</creator><creatorcontrib>Leroy, Rémy ; Trouvé-Peloux, Pauline ; Le Saux, Bertrand ; Buat, Benjamin ; Champagnat, Frédéric</creatorcontrib><description>We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.471105</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Computer Science ; Datasets ; Engineering Sciences ; Image classification ; Mathematics ; Physics ; Regression ; Statistical analysis ; Training</subject><ispartof>Applied optics (2004), 2022-10, Vol.61 (29), p.8843</ispartof><rights>Copyright Optical Society of America Oct 10, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</citedby><cites>FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</cites><orcidid>0000-0003-1763-8142 ; 0000-0003-4581-2929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03847366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroy, Rémy</creatorcontrib><creatorcontrib>Trouvé-Peloux, Pauline</creatorcontrib><creatorcontrib>Le Saux, Bertrand</creatorcontrib><creatorcontrib>Buat, Benjamin</creatorcontrib><creatorcontrib>Champagnat, Frédéric</creatorcontrib><title>Learning local depth regression from defocus blur by soft-assignment encoding</title><title>Applied optics (2004)</title><description>We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.</description><subject>Computer Science</subject><subject>Datasets</subject><subject>Engineering Sciences</subject><subject>Image classification</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>Training</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEURoMoWKsL3yDgysXUZDL5Ww5FrTDSjYK7kMkk7ZRpUpMZoW9vpKKbey8fh8PlA-AWowUmrHqo14uKY4zoGZiVmNKCYEbPwSyfssCl-LgEVyntECK0knwGXhuro-_9Bg7B6AF29jBuYbSbaFPqg4cuhn1OXTBTgu0wRdgeYQpuLHQGNn5v_QitN6HLkmtw4fSQ7M3vnoP3p8e35apo1s8vy7opDKFyLLgpDXOCopZLQTppWk4lY8IYy0xHUIWRwVVmCZOt1CIPi5FzWBisaWvIHNyfvFs9qEPs9zoeVdC9WtWN-skQERUnjH3hzN6d2EMMn5NNo9qFKfr8nip5SVlFS8L_jSaGlKJ1f1qM1E-zql6rU7PkG3QQah0</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Leroy, Rémy</creator><creator>Trouvé-Peloux, Pauline</creator><creator>Le Saux, Bertrand</creator><creator>Buat, Benjamin</creator><creator>Champagnat, Frédéric</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1763-8142</orcidid><orcidid>https://orcid.org/0000-0003-4581-2929</orcidid></search><sort><creationdate>20221010</creationdate><title>Learning local depth regression from defocus blur by soft-assignment encoding</title><author>Leroy, Rémy ; Trouvé-Peloux, Pauline ; Le Saux, Bertrand ; Buat, Benjamin ; Champagnat, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Datasets</topic><topic>Engineering Sciences</topic><topic>Image classification</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroy, Rémy</creatorcontrib><creatorcontrib>Trouvé-Peloux, Pauline</creatorcontrib><creatorcontrib>Le Saux, Bertrand</creatorcontrib><creatorcontrib>Buat, Benjamin</creatorcontrib><creatorcontrib>Champagnat, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroy, Rémy</au><au>Trouvé-Peloux, Pauline</au><au>Le Saux, Bertrand</au><au>Buat, Benjamin</au><au>Champagnat, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning local depth regression from defocus blur by soft-assignment encoding</atitle><jtitle>Applied optics (2004)</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>61</volume><issue>29</issue><spage>8843</spage><pages>8843-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.471105</doi><orcidid>https://orcid.org/0000-0003-1763-8142</orcidid><orcidid>https://orcid.org/0000-0003-4581-2929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2022-10, Vol.61 (29), p.8843
issn 1559-128X
2155-3165
language eng
recordid cdi_hal_primary_oai_HAL_hal_03847366v1
source Optica Publishing Group Journals (Optical Society)
subjects Computer Science
Datasets
Engineering Sciences
Image classification
Mathematics
Physics
Regression
Statistical analysis
Training
title Learning local depth regression from defocus blur by soft-assignment encoding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20local%20depth%20regression%20from%20defocus%20blur%20by%20soft-assignment%20encoding&rft.jtitle=Applied%20optics%20(2004)&rft.au=Leroy,%20R%C3%A9my&rft.date=2022-10-10&rft.volume=61&rft.issue=29&rft.spage=8843&rft.pages=8843-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.471105&rft_dat=%3Cproquest_hal_p%3E2725645237%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725645237&rft_id=info:pmid/&rfr_iscdi=true