Loading…
Learning local depth regression from defocus blur by soft-assignment encoding
We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the con...
Saved in:
Published in: | Applied optics (2004) 2022-10, Vol.61 (29), p.8843 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3 |
container_end_page | |
container_issue | 29 |
container_start_page | 8843 |
container_title | Applied optics (2004) |
container_volume | 61 |
creator | Leroy, Rémy Trouvé-Peloux, Pauline Le Saux, Bertrand Buat, Benjamin Champagnat, Frédéric |
description | We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment. |
doi_str_mv | 10.1364/AO.471105 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03847366v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725645237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</originalsourceid><addsrcrecordid>eNpFkM1KAzEURoMoWKsL3yDgysXUZDL5Ww5FrTDSjYK7kMkk7ZRpUpMZoW9vpKKbey8fh8PlA-AWowUmrHqo14uKY4zoGZiVmNKCYEbPwSyfssCl-LgEVyntECK0knwGXhuro-_9Bg7B6AF29jBuYbSbaFPqg4cuhn1OXTBTgu0wRdgeYQpuLHQGNn5v_QitN6HLkmtw4fSQ7M3vnoP3p8e35apo1s8vy7opDKFyLLgpDXOCopZLQTppWk4lY8IYy0xHUIWRwVVmCZOt1CIPi5FzWBisaWvIHNyfvFs9qEPs9zoeVdC9WtWN-skQERUnjH3hzN6d2EMMn5NNo9qFKfr8nip5SVlFS8L_jSaGlKJ1f1qM1E-zql6rU7PkG3QQah0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725645237</pqid></control><display><type>article</type><title>Learning local depth regression from defocus blur by soft-assignment encoding</title><source>Optica Publishing Group Journals (Optical Society)</source><creator>Leroy, Rémy ; Trouvé-Peloux, Pauline ; Le Saux, Bertrand ; Buat, Benjamin ; Champagnat, Frédéric</creator><creatorcontrib>Leroy, Rémy ; Trouvé-Peloux, Pauline ; Le Saux, Bertrand ; Buat, Benjamin ; Champagnat, Frédéric</creatorcontrib><description>We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.471105</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Computer Science ; Datasets ; Engineering Sciences ; Image classification ; Mathematics ; Physics ; Regression ; Statistical analysis ; Training</subject><ispartof>Applied optics (2004), 2022-10, Vol.61 (29), p.8843</ispartof><rights>Copyright Optical Society of America Oct 10, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</citedby><cites>FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</cites><orcidid>0000-0003-1763-8142 ; 0000-0003-4581-2929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03847366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroy, Rémy</creatorcontrib><creatorcontrib>Trouvé-Peloux, Pauline</creatorcontrib><creatorcontrib>Le Saux, Bertrand</creatorcontrib><creatorcontrib>Buat, Benjamin</creatorcontrib><creatorcontrib>Champagnat, Frédéric</creatorcontrib><title>Learning local depth regression from defocus blur by soft-assignment encoding</title><title>Applied optics (2004)</title><description>We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.</description><subject>Computer Science</subject><subject>Datasets</subject><subject>Engineering Sciences</subject><subject>Image classification</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>Training</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEURoMoWKsL3yDgysXUZDL5Ww5FrTDSjYK7kMkk7ZRpUpMZoW9vpKKbey8fh8PlA-AWowUmrHqo14uKY4zoGZiVmNKCYEbPwSyfssCl-LgEVyntECK0knwGXhuro-_9Bg7B6AF29jBuYbSbaFPqg4cuhn1OXTBTgu0wRdgeYQpuLHQGNn5v_QitN6HLkmtw4fSQ7M3vnoP3p8e35apo1s8vy7opDKFyLLgpDXOCopZLQTppWk4lY8IYy0xHUIWRwVVmCZOt1CIPi5FzWBisaWvIHNyfvFs9qEPs9zoeVdC9WtWN-skQERUnjH3hzN6d2EMMn5NNo9qFKfr8nip5SVlFS8L_jSaGlKJ1f1qM1E-zql6rU7PkG3QQah0</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Leroy, Rémy</creator><creator>Trouvé-Peloux, Pauline</creator><creator>Le Saux, Bertrand</creator><creator>Buat, Benjamin</creator><creator>Champagnat, Frédéric</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1763-8142</orcidid><orcidid>https://orcid.org/0000-0003-4581-2929</orcidid></search><sort><creationdate>20221010</creationdate><title>Learning local depth regression from defocus blur by soft-assignment encoding</title><author>Leroy, Rémy ; Trouvé-Peloux, Pauline ; Le Saux, Bertrand ; Buat, Benjamin ; Champagnat, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Datasets</topic><topic>Engineering Sciences</topic><topic>Image classification</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroy, Rémy</creatorcontrib><creatorcontrib>Trouvé-Peloux, Pauline</creatorcontrib><creatorcontrib>Le Saux, Bertrand</creatorcontrib><creatorcontrib>Buat, Benjamin</creatorcontrib><creatorcontrib>Champagnat, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroy, Rémy</au><au>Trouvé-Peloux, Pauline</au><au>Le Saux, Bertrand</au><au>Buat, Benjamin</au><au>Champagnat, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning local depth regression from defocus blur by soft-assignment encoding</atitle><jtitle>Applied optics (2004)</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>61</volume><issue>29</issue><spage>8843</spage><pages>8843-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model or scene model; it only requires a training dataset of image patches (either raw, gray scale, or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression on simulated images from structured or natural texture datasets, and on raw real data having optical aberrations from an active DFD experiment.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.471105</doi><orcidid>https://orcid.org/0000-0003-1763-8142</orcidid><orcidid>https://orcid.org/0000-0003-4581-2929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2022-10, Vol.61 (29), p.8843 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03847366v1 |
source | Optica Publishing Group Journals (Optical Society) |
subjects | Computer Science Datasets Engineering Sciences Image classification Mathematics Physics Regression Statistical analysis Training |
title | Learning local depth regression from defocus blur by soft-assignment encoding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20local%20depth%20regression%20from%20defocus%20blur%20by%20soft-assignment%20encoding&rft.jtitle=Applied%20optics%20(2004)&rft.au=Leroy,%20R%C3%A9my&rft.date=2022-10-10&rft.volume=61&rft.issue=29&rft.spage=8843&rft.pages=8843-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.471105&rft_dat=%3Cproquest_hal_p%3E2725645237%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-7c2c6f850b7983d9cb759668cce6cd30410c14c35369b9a89b9e10ff18c1a5bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725645237&rft_id=info:pmid/&rfr_iscdi=true |