Loading…

Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case

We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions D ≥ 4 . This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W , called the ground state. We prove that every finite energy solution wit...

Full description

Saved in:
Bibliographic Details
Published in:Annals of PDE 2023-12, Vol.9 (2), p.18, Article 18
Main Authors: Jendrej, Jacek, Lawrie, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33
cites cdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33
container_end_page
container_issue 2
container_start_page 18
container_title Annals of PDE
container_volume 9
creator Jendrej, Jacek
Lawrie, Andrew
description We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions D ≥ 4 . This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W , called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.
doi_str_mv 10.1007/s40818-023-00159-4
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03852322v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922078589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOa-gE8Fn3yI3vxrm8cxphOGwnT4GNI23TJqsyXdYN_ebBV98yHkcPM754aD0C2BBwKQPQYOOckxUIYBiJCYX6ABJVJiKrL0MmpBORaMZNdoFMIGACjhXEA6QMt319jOtcnCBNfsOxtl7XzSrU0ybY1fHfHE286WukleXdvY1miffOpDfN7t9Zm37Rlf6MpGaqKDuUFXtW6CGf3cQ7R8mn5MZnj-9vwyGc9xyQTrsBQ1EYXMDBGsqDgIKQkjKeG5ZLwmOSvjSYvCFGWRVhVUNYCpoaSUMUo1Y0N03-eudaO23n5pf1ROWzUbz9VpBiwXNLIHEtm7nt16t9ub0KmN2_s2fk9RSSlkuYhrh4j2VOldCN7Uv7EE1Klt1betYtvq3Lbi0cR6U4hwuzL-L_of1zegPn-x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922078589</pqid></control><display><type>article</type><title>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Jendrej, Jacek ; Lawrie, Andrew</creator><creatorcontrib>Jendrej, Jacek ; Lawrie, Andrew</creatorcontrib><description>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions D ≥ 4 . This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W , called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-023-00159-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis of PDEs ; Bubbles ; Cauchy problems ; Energy ; Ground state ; Mathematical Methods in Physics ; Mathematics ; Partial Differential Equations ; Physics ; Physics and Astronomy ; Radiation ; Solitary waves ; Wave equations</subject><ispartof>Annals of PDE, 2023-12, Vol.9 (2), p.18, Article 18</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</citedby><cites>FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</cites><orcidid>0000-0002-7630-0160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03852322$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Lawrie, Andrew</creatorcontrib><title>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions D ≥ 4 . This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W , called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</description><subject>Analysis of PDEs</subject><subject>Bubbles</subject><subject>Cauchy problems</subject><subject>Energy</subject><subject>Ground state</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Solitary waves</subject><subject>Wave equations</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOOa-gE8Fn3yI3vxrm8cxphOGwnT4GNI23TJqsyXdYN_ebBV98yHkcPM754aD0C2BBwKQPQYOOckxUIYBiJCYX6ABJVJiKrL0MmpBORaMZNdoFMIGACjhXEA6QMt319jOtcnCBNfsOxtl7XzSrU0ybY1fHfHE286WukleXdvY1miffOpDfN7t9Zm37Rlf6MpGaqKDuUFXtW6CGf3cQ7R8mn5MZnj-9vwyGc9xyQTrsBQ1EYXMDBGsqDgIKQkjKeG5ZLwmOSvjSYvCFGWRVhVUNYCpoaSUMUo1Y0N03-eudaO23n5pf1ROWzUbz9VpBiwXNLIHEtm7nt16t9ub0KmN2_s2fk9RSSlkuYhrh4j2VOldCN7Uv7EE1Klt1betYtvq3Lbi0cR6U4hwuzL-L_of1zegPn-x</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jendrej, Jacek</creator><creator>Lawrie, Andrew</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid></search><sort><creationdate>20231201</creationdate><title>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</title><author>Jendrej, Jacek ; Lawrie, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis of PDEs</topic><topic>Bubbles</topic><topic>Cauchy problems</topic><topic>Energy</topic><topic>Ground state</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Solitary waves</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Lawrie, Andrew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jendrej, Jacek</au><au>Lawrie, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>18</spage><pages>18-</pages><artnum>18</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions D ≥ 4 . This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W , called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-023-00159-4</doi><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-5317
ispartof Annals of PDE, 2023-12, Vol.9 (2), p.18, Article 18
issn 2524-5317
2199-2576
language eng
recordid cdi_hal_primary_oai_HAL_hal_03852322v1
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Analysis of PDEs
Bubbles
Cauchy problems
Energy
Ground state
Mathematical Methods in Physics
Mathematics
Partial Differential Equations
Physics
Physics and Astronomy
Radiation
Solitary waves
Wave equations
title Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soliton%20Resolution%20for%20the%20Energy-Critical%20Nonlinear%20Wave%20Equation%20in%20the%20Radial%20Case&rft.jtitle=Annals%20of%20PDE&rft.au=Jendrej,%20Jacek&rft.date=2023-12-01&rft.volume=9&rft.issue=2&rft.spage=18&rft.pages=18-&rft.artnum=18&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-023-00159-4&rft_dat=%3Cproquest_hal_p%3E2922078589%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922078589&rft_id=info:pmid/&rfr_iscdi=true