Loading…
Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case
We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions D ≥ 4 . This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W , called the ground state. We prove that every finite energy solution wit...
Saved in:
Published in: | Annals of PDE 2023-12, Vol.9 (2), p.18, Article 18 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33 |
container_end_page | |
container_issue | 2 |
container_start_page | 18 |
container_title | Annals of PDE |
container_volume | 9 |
creator | Jendrej, Jacek Lawrie, Andrew |
description | We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions
D
≥
4
. This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution
W
, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation. |
doi_str_mv | 10.1007/s40818-023-00159-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03852322v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922078589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOa-gE8Fn3yI3vxrm8cxphOGwnT4GNI23TJqsyXdYN_ebBV98yHkcPM754aD0C2BBwKQPQYOOckxUIYBiJCYX6ABJVJiKrL0MmpBORaMZNdoFMIGACjhXEA6QMt319jOtcnCBNfsOxtl7XzSrU0ybY1fHfHE286WukleXdvY1miffOpDfN7t9Zm37Rlf6MpGaqKDuUFXtW6CGf3cQ7R8mn5MZnj-9vwyGc9xyQTrsBQ1EYXMDBGsqDgIKQkjKeG5ZLwmOSvjSYvCFGWRVhVUNYCpoaSUMUo1Y0N03-eudaO23n5pf1ROWzUbz9VpBiwXNLIHEtm7nt16t9ub0KmN2_s2fk9RSSlkuYhrh4j2VOldCN7Uv7EE1Klt1betYtvq3Lbi0cR6U4hwuzL-L_of1zegPn-x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922078589</pqid></control><display><type>article</type><title>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Jendrej, Jacek ; Lawrie, Andrew</creator><creatorcontrib>Jendrej, Jacek ; Lawrie, Andrew</creatorcontrib><description>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions
D
≥
4
. This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution
W
, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-023-00159-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis of PDEs ; Bubbles ; Cauchy problems ; Energy ; Ground state ; Mathematical Methods in Physics ; Mathematics ; Partial Differential Equations ; Physics ; Physics and Astronomy ; Radiation ; Solitary waves ; Wave equations</subject><ispartof>Annals of PDE, 2023-12, Vol.9 (2), p.18, Article 18</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</citedby><cites>FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</cites><orcidid>0000-0002-7630-0160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03852322$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Lawrie, Andrew</creatorcontrib><title>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions
D
≥
4
. This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution
W
, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</description><subject>Analysis of PDEs</subject><subject>Bubbles</subject><subject>Cauchy problems</subject><subject>Energy</subject><subject>Ground state</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Solitary waves</subject><subject>Wave equations</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOOa-gE8Fn3yI3vxrm8cxphOGwnT4GNI23TJqsyXdYN_ebBV98yHkcPM754aD0C2BBwKQPQYOOckxUIYBiJCYX6ABJVJiKrL0MmpBORaMZNdoFMIGACjhXEA6QMt319jOtcnCBNfsOxtl7XzSrU0ybY1fHfHE286WukleXdvY1miffOpDfN7t9Zm37Rlf6MpGaqKDuUFXtW6CGf3cQ7R8mn5MZnj-9vwyGc9xyQTrsBQ1EYXMDBGsqDgIKQkjKeG5ZLwmOSvjSYvCFGWRVhVUNYCpoaSUMUo1Y0N03-eudaO23n5pf1ROWzUbz9VpBiwXNLIHEtm7nt16t9ub0KmN2_s2fk9RSSlkuYhrh4j2VOldCN7Uv7EE1Klt1betYtvq3Lbi0cR6U4hwuzL-L_of1zegPn-x</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jendrej, Jacek</creator><creator>Lawrie, Andrew</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid></search><sort><creationdate>20231201</creationdate><title>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</title><author>Jendrej, Jacek ; Lawrie, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis of PDEs</topic><topic>Bubbles</topic><topic>Cauchy problems</topic><topic>Energy</topic><topic>Ground state</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Solitary waves</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Lawrie, Andrew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jendrej, Jacek</au><au>Lawrie, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>18</spage><pages>18-</pages><artnum>18</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions
D
≥
4
. This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution
W
, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-023-00159-4</doi><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-5317 |
ispartof | Annals of PDE, 2023-12, Vol.9 (2), p.18, Article 18 |
issn | 2524-5317 2199-2576 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03852322v1 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Analysis of PDEs Bubbles Cauchy problems Energy Ground state Mathematical Methods in Physics Mathematics Partial Differential Equations Physics Physics and Astronomy Radiation Solitary waves Wave equations |
title | Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soliton%20Resolution%20for%20the%20Energy-Critical%20Nonlinear%20Wave%20Equation%20in%20the%20Radial%20Case&rft.jtitle=Annals%20of%20PDE&rft.au=Jendrej,%20Jacek&rft.date=2023-12-01&rft.volume=9&rft.issue=2&rft.spage=18&rft.pages=18-&rft.artnum=18&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-023-00159-4&rft_dat=%3Cproquest_hal_p%3E2922078589%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-95f15b97e153bd405991316148934f183c1836bbebcb6dd0df00ef0c223322a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922078589&rft_id=info:pmid/&rfr_iscdi=true |