Loading…

Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest

Several studies have assessed forest disturbance in tropical forests using Landsat imagery. However, the spatial resolution (30 m) of Landsat images has often been considered too coarse to accurately detect the extent and impacts of selective logging. The Sentinel-2 satellite launched in 2015 has be...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied remote sensing 2022-01, Vol.16 (1), p.014526-014526
Main Authors: Castillo, Guido Vicente Briceño, de Freitas, Lucas José Mazzei, Cordeiro, Victor Almeida, Orellana, Jorge Breno Palheta, Reategui-Betancourt, Jorge Luis, Nagy, Laszlo, Matricardi, Eraldo Aparecido Trondoli
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 014526
container_issue 1
container_start_page 014526
container_title Journal of applied remote sensing
container_volume 16
creator Castillo, Guido Vicente Briceño
de Freitas, Lucas José Mazzei
Cordeiro, Victor Almeida
Orellana, Jorge Breno Palheta
Reategui-Betancourt, Jorge Luis
Nagy, Laszlo
Matricardi, Eraldo Aparecido Trondoli
description Several studies have assessed forest disturbance in tropical forests using Landsat imagery. However, the spatial resolution (30 m) of Landsat images has often been considered too coarse to accurately detect the extent and impacts of selective logging. The Sentinel-2 satellite launched in 2015 has been providing images at spatial resolutions of 10 to 20 m and those images have shown an improved potential for detecting forest disturbances in tropical regions. We compared Landsat-8 and Sentinel-2 imagery for detecting selective logging in a rain forest site in the Brazilian Amazon. The aerosol-free modified soil adjusted vegetation index (MSAVI_af) was retrieved from the satellite images acquired in August 2020 immediately following logging. A robust reference dataset of very-high-resolution imagery (0.5 m) acquired using a complementary metal oxide semiconductor sensor (visible bands) onboard of an unmanned aerial vehicle was used to image the area of interest and a map derived from it was used to assess the classification accuracies made using satellite-derived data. The overall accuracy of the classified Sentinel-2 and Landsat-8 images varied between 54% and 83%, depending on the applied classification parameters for distinguishing undisturbed from disturbed forest canopy. Images acquired using the UAV allowed us to detect subtle impacts of canopy openings by selective logging activities. Images acquired using the UAV allowed the detection of small canopy openings, but not Sentinel-2 or Landsat-8. Sentinel-2 provided more details of canopy disturbances than Landsat image. Our classification approach is fully implementable on the Google Earth Engine platform and is a promising technique to monitor selective logging impacts in tropical forests.
doi_str_mv 10.1117/1.JRS.16.014526
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03869455v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03869455v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-5b5dc47c51a3ec4e8b25684eaae8b2f8a2dacbc88aca532f7e15f5bcd511ccca3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhYMoWKtnr3sV2jSTZJPtMRa1SkCw1usy2WzaLckm7K4F--tNiIgXT-_N8L6BeZ53C4EPAOkC_Je3jQ-JH0BMw-TMm8AygnkES3r-x196V9YegoBGjKUTr8usldY2UjvSVsTKWgqnjpLU7W6n9I6opkPhLPm0w7TNPmYkR11adDPSK9n0pNKyJiU6JEoTt5fk3uBJ1Qo1yRo8tZoYVLpqjbTu2ruosLby5ken3vbx4X21nuevT8-rLJ-LKEjdnBa0FHEqKGAkRSxZEdKExRJxsBXDsERRCMZQII3CKpVAK1qIkgIIITCaenfj3T3WvDOqQfPFW1R8neV82AURS5YxpUfos4sxK0xrrZHVLwABH8rlwPtyOSR8LLcnZiNhOyX5of00un_m3_g3ZsZ8lA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest</title><source>SPIE Digital Library Journals</source><creator>Castillo, Guido Vicente Briceño ; de Freitas, Lucas José Mazzei ; Cordeiro, Victor Almeida ; Orellana, Jorge Breno Palheta ; Reategui-Betancourt, Jorge Luis ; Nagy, Laszlo ; Matricardi, Eraldo Aparecido Trondoli</creator><creatorcontrib>Castillo, Guido Vicente Briceño ; de Freitas, Lucas José Mazzei ; Cordeiro, Victor Almeida ; Orellana, Jorge Breno Palheta ; Reategui-Betancourt, Jorge Luis ; Nagy, Laszlo ; Matricardi, Eraldo Aparecido Trondoli</creatorcontrib><description>Several studies have assessed forest disturbance in tropical forests using Landsat imagery. However, the spatial resolution (30 m) of Landsat images has often been considered too coarse to accurately detect the extent and impacts of selective logging. The Sentinel-2 satellite launched in 2015 has been providing images at spatial resolutions of 10 to 20 m and those images have shown an improved potential for detecting forest disturbances in tropical regions. We compared Landsat-8 and Sentinel-2 imagery for detecting selective logging in a rain forest site in the Brazilian Amazon. The aerosol-free modified soil adjusted vegetation index (MSAVI_af) was retrieved from the satellite images acquired in August 2020 immediately following logging. A robust reference dataset of very-high-resolution imagery (0.5 m) acquired using a complementary metal oxide semiconductor sensor (visible bands) onboard of an unmanned aerial vehicle was used to image the area of interest and a map derived from it was used to assess the classification accuracies made using satellite-derived data. The overall accuracy of the classified Sentinel-2 and Landsat-8 images varied between 54% and 83%, depending on the applied classification parameters for distinguishing undisturbed from disturbed forest canopy. Images acquired using the UAV allowed us to detect subtle impacts of canopy openings by selective logging activities. Images acquired using the UAV allowed the detection of small canopy openings, but not Sentinel-2 or Landsat-8. Sentinel-2 provided more details of canopy disturbances than Landsat image. Our classification approach is fully implementable on the Google Earth Engine platform and is a promising technique to monitor selective logging impacts in tropical forests.</description><identifier>ISSN: 1931-3195</identifier><identifier>EISSN: 1931-3195</identifier><identifier>DOI: 10.1117/1.JRS.16.014526</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><subject>Geography ; Humanities and Social Sciences</subject><ispartof>Journal of applied remote sensing, 2022-01, Vol.16 (1), p.014526-014526</ispartof><rights>2022 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2727-2968 ; 0000-0003-2194-4716 ; 0000-0002-5323-6100 ; 0000-0002-1757-9472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.JRS.16.014526$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://www.dx.doi.org/10.1117/1.JRS.16.014526$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>230,314,780,784,885,24043,27924,27925,55379,55380</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03869455$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castillo, Guido Vicente Briceño</creatorcontrib><creatorcontrib>de Freitas, Lucas José Mazzei</creatorcontrib><creatorcontrib>Cordeiro, Victor Almeida</creatorcontrib><creatorcontrib>Orellana, Jorge Breno Palheta</creatorcontrib><creatorcontrib>Reategui-Betancourt, Jorge Luis</creatorcontrib><creatorcontrib>Nagy, Laszlo</creatorcontrib><creatorcontrib>Matricardi, Eraldo Aparecido Trondoli</creatorcontrib><title>Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest</title><title>Journal of applied remote sensing</title><addtitle>J. Appl. Remote Sens</addtitle><description>Several studies have assessed forest disturbance in tropical forests using Landsat imagery. However, the spatial resolution (30 m) of Landsat images has often been considered too coarse to accurately detect the extent and impacts of selective logging. The Sentinel-2 satellite launched in 2015 has been providing images at spatial resolutions of 10 to 20 m and those images have shown an improved potential for detecting forest disturbances in tropical regions. We compared Landsat-8 and Sentinel-2 imagery for detecting selective logging in a rain forest site in the Brazilian Amazon. The aerosol-free modified soil adjusted vegetation index (MSAVI_af) was retrieved from the satellite images acquired in August 2020 immediately following logging. A robust reference dataset of very-high-resolution imagery (0.5 m) acquired using a complementary metal oxide semiconductor sensor (visible bands) onboard of an unmanned aerial vehicle was used to image the area of interest and a map derived from it was used to assess the classification accuracies made using satellite-derived data. The overall accuracy of the classified Sentinel-2 and Landsat-8 images varied between 54% and 83%, depending on the applied classification parameters for distinguishing undisturbed from disturbed forest canopy. Images acquired using the UAV allowed us to detect subtle impacts of canopy openings by selective logging activities. Images acquired using the UAV allowed the detection of small canopy openings, but not Sentinel-2 or Landsat-8. Sentinel-2 provided more details of canopy disturbances than Landsat image. Our classification approach is fully implementable on the Google Earth Engine platform and is a promising technique to monitor selective logging impacts in tropical forests.</description><subject>Geography</subject><subject>Humanities and Social Sciences</subject><issn>1931-3195</issn><issn>1931-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhYMoWKtnr3sV2jSTZJPtMRa1SkCw1usy2WzaLckm7K4F--tNiIgXT-_N8L6BeZ53C4EPAOkC_Je3jQ-JH0BMw-TMm8AygnkES3r-x196V9YegoBGjKUTr8usldY2UjvSVsTKWgqnjpLU7W6n9I6opkPhLPm0w7TNPmYkR11adDPSK9n0pNKyJiU6JEoTt5fk3uBJ1Qo1yRo8tZoYVLpqjbTu2ruosLby5ken3vbx4X21nuevT8-rLJ-LKEjdnBa0FHEqKGAkRSxZEdKExRJxsBXDsERRCMZQII3CKpVAK1qIkgIIITCaenfj3T3WvDOqQfPFW1R8neV82AURS5YxpUfos4sxK0xrrZHVLwABH8rlwPtyOSR8LLcnZiNhOyX5of00un_m3_g3ZsZ8lA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Castillo, Guido Vicente Briceño</creator><creator>de Freitas, Lucas José Mazzei</creator><creator>Cordeiro, Victor Almeida</creator><creator>Orellana, Jorge Breno Palheta</creator><creator>Reategui-Betancourt, Jorge Luis</creator><creator>Nagy, Laszlo</creator><creator>Matricardi, Eraldo Aparecido Trondoli</creator><general>Society of Photo-Optical Instrumentation Engineers</general><general>Bellingham, WA : SPIE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2727-2968</orcidid><orcidid>https://orcid.org/0000-0003-2194-4716</orcidid><orcidid>https://orcid.org/0000-0002-5323-6100</orcidid><orcidid>https://orcid.org/0000-0002-1757-9472</orcidid></search><sort><creationdate>20220101</creationdate><title>Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest</title><author>Castillo, Guido Vicente Briceño ; de Freitas, Lucas José Mazzei ; Cordeiro, Victor Almeida ; Orellana, Jorge Breno Palheta ; Reategui-Betancourt, Jorge Luis ; Nagy, Laszlo ; Matricardi, Eraldo Aparecido Trondoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-5b5dc47c51a3ec4e8b25684eaae8b2f8a2dacbc88aca532f7e15f5bcd511ccca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Geography</topic><topic>Humanities and Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Guido Vicente Briceño</creatorcontrib><creatorcontrib>de Freitas, Lucas José Mazzei</creatorcontrib><creatorcontrib>Cordeiro, Victor Almeida</creatorcontrib><creatorcontrib>Orellana, Jorge Breno Palheta</creatorcontrib><creatorcontrib>Reategui-Betancourt, Jorge Luis</creatorcontrib><creatorcontrib>Nagy, Laszlo</creatorcontrib><creatorcontrib>Matricardi, Eraldo Aparecido Trondoli</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Guido Vicente Briceño</au><au>de Freitas, Lucas José Mazzei</au><au>Cordeiro, Victor Almeida</au><au>Orellana, Jorge Breno Palheta</au><au>Reategui-Betancourt, Jorge Luis</au><au>Nagy, Laszlo</au><au>Matricardi, Eraldo Aparecido Trondoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest</atitle><jtitle>Journal of applied remote sensing</jtitle><addtitle>J. Appl. Remote Sens</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>014526</spage><epage>014526</epage><pages>014526-014526</pages><issn>1931-3195</issn><eissn>1931-3195</eissn><abstract>Several studies have assessed forest disturbance in tropical forests using Landsat imagery. However, the spatial resolution (30 m) of Landsat images has often been considered too coarse to accurately detect the extent and impacts of selective logging. The Sentinel-2 satellite launched in 2015 has been providing images at spatial resolutions of 10 to 20 m and those images have shown an improved potential for detecting forest disturbances in tropical regions. We compared Landsat-8 and Sentinel-2 imagery for detecting selective logging in a rain forest site in the Brazilian Amazon. The aerosol-free modified soil adjusted vegetation index (MSAVI_af) was retrieved from the satellite images acquired in August 2020 immediately following logging. A robust reference dataset of very-high-resolution imagery (0.5 m) acquired using a complementary metal oxide semiconductor sensor (visible bands) onboard of an unmanned aerial vehicle was used to image the area of interest and a map derived from it was used to assess the classification accuracies made using satellite-derived data. The overall accuracy of the classified Sentinel-2 and Landsat-8 images varied between 54% and 83%, depending on the applied classification parameters for distinguishing undisturbed from disturbed forest canopy. Images acquired using the UAV allowed us to detect subtle impacts of canopy openings by selective logging activities. Images acquired using the UAV allowed the detection of small canopy openings, but not Sentinel-2 or Landsat-8. Sentinel-2 provided more details of canopy disturbances than Landsat image. Our classification approach is fully implementable on the Google Earth Engine platform and is a promising technique to monitor selective logging impacts in tropical forests.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><doi>10.1117/1.JRS.16.014526</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2727-2968</orcidid><orcidid>https://orcid.org/0000-0003-2194-4716</orcidid><orcidid>https://orcid.org/0000-0002-5323-6100</orcidid><orcidid>https://orcid.org/0000-0002-1757-9472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3195
ispartof Journal of applied remote sensing, 2022-01, Vol.16 (1), p.014526-014526
issn 1931-3195
1931-3195
language eng
recordid cdi_hal_primary_oai_HAL_hal_03869455v1
source SPIE Digital Library Journals
subjects Geography
Humanities and Social Sciences
title Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20selective%20logging%20impacts%20using%20UAV,%20Landsat,%20and%20Sentinel%20data%20in%20the%20Brazilian%20Amazon%20rainforest&rft.jtitle=Journal%20of%20applied%20remote%20sensing&rft.au=Castillo,%20Guido%20Vicente%20Brice%C3%B1o&rft.date=2022-01-01&rft.volume=16&rft.issue=1&rft.spage=014526&rft.epage=014526&rft.pages=014526-014526&rft.issn=1931-3195&rft.eissn=1931-3195&rft_id=info:doi/10.1117/1.JRS.16.014526&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03869455v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-5b5dc47c51a3ec4e8b25684eaae8b2f8a2dacbc88aca532f7e15f5bcd511ccca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true