Loading…

Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri

Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Sacch...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2022-12, Vol.24 (12), p.5615-5629
Main Authors: Villarreal, Pablo, Villarroel, Carlos A., O'Donnell, Sam, Agier, Nicolas, Quintero‐Galvis, Julian F., Peña, Tomas A., Nespolo, Roberto F., Fischer, Gilles, Varela, Cristian, Cubillos, Francisco A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103
cites cdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103
container_end_page 5629
container_issue 12
container_start_page 5615
container_title Environmental microbiology
container_volume 24
creator Villarreal, Pablo
Villarroel, Carlos A.
O'Donnell, Sam
Agier, Nicolas
Quintero‐Galvis, Julian F.
Peña, Tomas A.
Nespolo, Roberto F.
Fischer, Gilles
Varela, Cristian
Cubillos, Francisco A.
description Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.
doi_str_mv 10.1111/1462-2920.16103
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03873794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755408429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</originalsourceid><addsrcrecordid>eNqFkc1O3DAUhS1UVCjtml1liQ1dDPg3P0uEoIMUBBJ0bTnOTccoYwc7GTQ7HqHP2Cep09BZsKk3to-_e-R7D0LHlJzRtM6pyNiClSxdM0r4HjrcKR92Z8oO0KcYnwihOc_JR3TAZZ6VhPFD9FzpAfB9BzYO3oCD36-_miQ1uLEbCD_BGcA1DC8ADj_4cVjhJaxt7FcQAPe-Hzs9WO8i9i0eVoCdd8nCeLcBNz3oDm9BxwFXZ9jYJtjPaL_VXYQvb_sR-nF99Xi5XFR3328uL6qFESLjCwO55pRBKXmtmRaUmTajtJQFJ7muhRC6zkvWctlQDpxrDQ2pdZYZaGWRZnGEvs2-K92pPti1DlvltVXLi0pNGuFFGkcpNjSxpzPbB_88QhxUatFA12kHfoyKZQXLC5l8E3ryDn3yY0htJiqXUpBCsDJR5zNlgo8xQLv7ASVqSk5N2agpJ_U3uVTx9c13rNfQ7Ph_USVAzsCL7WD7Pz91dXszG_8BUq6jvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755408429</pqid></control><display><type>article</type><title>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</title><source>Wiley</source><creator>Villarreal, Pablo ; Villarroel, Carlos A. ; O'Donnell, Sam ; Agier, Nicolas ; Quintero‐Galvis, Julian F. ; Peña, Tomas A. ; Nespolo, Roberto F. ; Fischer, Gilles ; Varela, Cristian ; Cubillos, Francisco A.</creator><creatorcontrib>Villarreal, Pablo ; Villarroel, Carlos A. ; O'Donnell, Sam ; Agier, Nicolas ; Quintero‐Galvis, Julian F. ; Peña, Tomas A. ; Nespolo, Roberto F. ; Fischer, Gilles ; Varela, Cristian ; Cubillos, Francisco A.</creatorcontrib><description>Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16103</identifier><identifier>PMID: 35769023</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Australia ; Divergence ; Ecological distribution ; Ecological function ; Ecological niches ; Evolution ; Genetic diversity ; Genetic Variation ; Genetics ; Genomes ; Geographical distribution ; Haplotypes ; Human motion ; Humans ; Life Sciences ; Niches ; Phylogeny ; Pleistocene ; Saccharomyces cerevisiae ; Yeast ; Yeasts</subject><ispartof>Environmental microbiology, 2022-12, Vol.24 (12), p.5615-5629</ispartof><rights>2022 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</citedby><cites>FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</cites><orcidid>0000-0003-3022-469X ; 0000-0002-2254-0417 ; 0000-0001-5732-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35769023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03873794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villarreal, Pablo</creatorcontrib><creatorcontrib>Villarroel, Carlos A.</creatorcontrib><creatorcontrib>O'Donnell, Sam</creatorcontrib><creatorcontrib>Agier, Nicolas</creatorcontrib><creatorcontrib>Quintero‐Galvis, Julian F.</creatorcontrib><creatorcontrib>Peña, Tomas A.</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Fischer, Gilles</creatorcontrib><creatorcontrib>Varela, Cristian</creatorcontrib><creatorcontrib>Cubillos, Francisco A.</creatorcontrib><title>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.</description><subject>Australia</subject><subject>Divergence</subject><subject>Ecological distribution</subject><subject>Ecological function</subject><subject>Ecological niches</subject><subject>Evolution</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Geographical distribution</subject><subject>Haplotypes</subject><subject>Human motion</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Niches</subject><subject>Phylogeny</subject><subject>Pleistocene</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAUhS1UVCjtml1liQ1dDPg3P0uEoIMUBBJ0bTnOTccoYwc7GTQ7HqHP2Cep09BZsKk3to-_e-R7D0LHlJzRtM6pyNiClSxdM0r4HjrcKR92Z8oO0KcYnwihOc_JR3TAZZ6VhPFD9FzpAfB9BzYO3oCD36-_miQ1uLEbCD_BGcA1DC8ADj_4cVjhJaxt7FcQAPe-Hzs9WO8i9i0eVoCdd8nCeLcBNz3oDm9BxwFXZ9jYJtjPaL_VXYQvb_sR-nF99Xi5XFR3328uL6qFESLjCwO55pRBKXmtmRaUmTajtJQFJ7muhRC6zkvWctlQDpxrDQ2pdZYZaGWRZnGEvs2-K92pPti1DlvltVXLi0pNGuFFGkcpNjSxpzPbB_88QhxUatFA12kHfoyKZQXLC5l8E3ryDn3yY0htJiqXUpBCsDJR5zNlgo8xQLv7ASVqSk5N2agpJ_U3uVTx9c13rNfQ7Ph_USVAzsCL7WD7Pz91dXszG_8BUq6jvw</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Villarreal, Pablo</creator><creator>Villarroel, Carlos A.</creator><creator>O'Donnell, Sam</creator><creator>Agier, Nicolas</creator><creator>Quintero‐Galvis, Julian F.</creator><creator>Peña, Tomas A.</creator><creator>Nespolo, Roberto F.</creator><creator>Fischer, Gilles</creator><creator>Varela, Cristian</creator><creator>Cubillos, Francisco A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Society for Applied Microbiology and Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3022-469X</orcidid><orcidid>https://orcid.org/0000-0002-2254-0417</orcidid><orcidid>https://orcid.org/0000-0001-5732-2682</orcidid></search><sort><creationdate>202212</creationdate><title>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</title><author>Villarreal, Pablo ; Villarroel, Carlos A. ; O'Donnell, Sam ; Agier, Nicolas ; Quintero‐Galvis, Julian F. ; Peña, Tomas A. ; Nespolo, Roberto F. ; Fischer, Gilles ; Varela, Cristian ; Cubillos, Francisco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Australia</topic><topic>Divergence</topic><topic>Ecological distribution</topic><topic>Ecological function</topic><topic>Ecological niches</topic><topic>Evolution</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Geographical distribution</topic><topic>Haplotypes</topic><topic>Human motion</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Niches</topic><topic>Phylogeny</topic><topic>Pleistocene</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villarreal, Pablo</creatorcontrib><creatorcontrib>Villarroel, Carlos A.</creatorcontrib><creatorcontrib>O'Donnell, Sam</creatorcontrib><creatorcontrib>Agier, Nicolas</creatorcontrib><creatorcontrib>Quintero‐Galvis, Julian F.</creatorcontrib><creatorcontrib>Peña, Tomas A.</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Fischer, Gilles</creatorcontrib><creatorcontrib>Varela, Cristian</creatorcontrib><creatorcontrib>Cubillos, Francisco A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villarreal, Pablo</au><au>Villarroel, Carlos A.</au><au>O'Donnell, Sam</au><au>Agier, Nicolas</au><au>Quintero‐Galvis, Julian F.</au><au>Peña, Tomas A.</au><au>Nespolo, Roberto F.</au><au>Fischer, Gilles</au><au>Varela, Cristian</au><au>Cubillos, Francisco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>5615</spage><epage>5629</epage><pages>5615-5629</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35769023</pmid><doi>10.1111/1462-2920.16103</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3022-469X</orcidid><orcidid>https://orcid.org/0000-0002-2254-0417</orcidid><orcidid>https://orcid.org/0000-0001-5732-2682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2022-12, Vol.24 (12), p.5615-5629
issn 1462-2912
1462-2920
language eng
recordid cdi_hal_primary_oai_HAL_hal_03873794v1
source Wiley
subjects Australia
Divergence
Ecological distribution
Ecological function
Ecological niches
Evolution
Genetic diversity
Genetic Variation
Genetics
Genomes
Geographical distribution
Haplotypes
Human motion
Humans
Life Sciences
Niches
Phylogeny
Pleistocene
Saccharomyces cerevisiae
Yeast
Yeasts
title Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Late%20Pleistocene%E2%80%90dated%20divergence%20between%20South%20Hemisphere%20populations%20of%20the%20non%E2%80%90conventional%20yeast%20L.%20cidri&rft.jtitle=Environmental%20microbiology&rft.au=Villarreal,%20Pablo&rft.date=2022-12&rft.volume=24&rft.issue=12&rft.spage=5615&rft.epage=5629&rft.pages=5615-5629&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16103&rft_dat=%3Cproquest_hal_p%3E2755408429%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755408429&rft_id=info:pmid/35769023&rfr_iscdi=true