Loading…
Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri
Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Sacch...
Saved in:
Published in: | Environmental microbiology 2022-12, Vol.24 (12), p.5615-5629 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103 |
---|---|
cites | cdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103 |
container_end_page | 5629 |
container_issue | 12 |
container_start_page | 5615 |
container_title | Environmental microbiology |
container_volume | 24 |
creator | Villarreal, Pablo Villarroel, Carlos A. O'Donnell, Sam Agier, Nicolas Quintero‐Galvis, Julian F. Peña, Tomas A. Nespolo, Roberto F. Fischer, Gilles Varela, Cristian Cubillos, Francisco A. |
description | Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia. |
doi_str_mv | 10.1111/1462-2920.16103 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03873794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755408429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</originalsourceid><addsrcrecordid>eNqFkc1O3DAUhS1UVCjtml1liQ1dDPg3P0uEoIMUBBJ0bTnOTccoYwc7GTQ7HqHP2Cep09BZsKk3to-_e-R7D0LHlJzRtM6pyNiClSxdM0r4HjrcKR92Z8oO0KcYnwihOc_JR3TAZZ6VhPFD9FzpAfB9BzYO3oCD36-_miQ1uLEbCD_BGcA1DC8ADj_4cVjhJaxt7FcQAPe-Hzs9WO8i9i0eVoCdd8nCeLcBNz3oDm9BxwFXZ9jYJtjPaL_VXYQvb_sR-nF99Xi5XFR3328uL6qFESLjCwO55pRBKXmtmRaUmTajtJQFJ7muhRC6zkvWctlQDpxrDQ2pdZYZaGWRZnGEvs2-K92pPti1DlvltVXLi0pNGuFFGkcpNjSxpzPbB_88QhxUatFA12kHfoyKZQXLC5l8E3ryDn3yY0htJiqXUpBCsDJR5zNlgo8xQLv7ASVqSk5N2agpJ_U3uVTx9c13rNfQ7Ph_USVAzsCL7WD7Pz91dXszG_8BUq6jvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755408429</pqid></control><display><type>article</type><title>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</title><source>Wiley</source><creator>Villarreal, Pablo ; Villarroel, Carlos A. ; O'Donnell, Sam ; Agier, Nicolas ; Quintero‐Galvis, Julian F. ; Peña, Tomas A. ; Nespolo, Roberto F. ; Fischer, Gilles ; Varela, Cristian ; Cubillos, Francisco A.</creator><creatorcontrib>Villarreal, Pablo ; Villarroel, Carlos A. ; O'Donnell, Sam ; Agier, Nicolas ; Quintero‐Galvis, Julian F. ; Peña, Tomas A. ; Nespolo, Roberto F. ; Fischer, Gilles ; Varela, Cristian ; Cubillos, Francisco A.</creatorcontrib><description>Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16103</identifier><identifier>PMID: 35769023</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Australia ; Divergence ; Ecological distribution ; Ecological function ; Ecological niches ; Evolution ; Genetic diversity ; Genetic Variation ; Genetics ; Genomes ; Geographical distribution ; Haplotypes ; Human motion ; Humans ; Life Sciences ; Niches ; Phylogeny ; Pleistocene ; Saccharomyces cerevisiae ; Yeast ; Yeasts</subject><ispartof>Environmental microbiology, 2022-12, Vol.24 (12), p.5615-5629</ispartof><rights>2022 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</citedby><cites>FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</cites><orcidid>0000-0003-3022-469X ; 0000-0002-2254-0417 ; 0000-0001-5732-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35769023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03873794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villarreal, Pablo</creatorcontrib><creatorcontrib>Villarroel, Carlos A.</creatorcontrib><creatorcontrib>O'Donnell, Sam</creatorcontrib><creatorcontrib>Agier, Nicolas</creatorcontrib><creatorcontrib>Quintero‐Galvis, Julian F.</creatorcontrib><creatorcontrib>Peña, Tomas A.</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Fischer, Gilles</creatorcontrib><creatorcontrib>Varela, Cristian</creatorcontrib><creatorcontrib>Cubillos, Francisco A.</creatorcontrib><title>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.</description><subject>Australia</subject><subject>Divergence</subject><subject>Ecological distribution</subject><subject>Ecological function</subject><subject>Ecological niches</subject><subject>Evolution</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Geographical distribution</subject><subject>Haplotypes</subject><subject>Human motion</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Niches</subject><subject>Phylogeny</subject><subject>Pleistocene</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAUhS1UVCjtml1liQ1dDPg3P0uEoIMUBBJ0bTnOTccoYwc7GTQ7HqHP2Cep09BZsKk3to-_e-R7D0LHlJzRtM6pyNiClSxdM0r4HjrcKR92Z8oO0KcYnwihOc_JR3TAZZ6VhPFD9FzpAfB9BzYO3oCD36-_miQ1uLEbCD_BGcA1DC8ADj_4cVjhJaxt7FcQAPe-Hzs9WO8i9i0eVoCdd8nCeLcBNz3oDm9BxwFXZ9jYJtjPaL_VXYQvb_sR-nF99Xi5XFR3328uL6qFESLjCwO55pRBKXmtmRaUmTajtJQFJ7muhRC6zkvWctlQDpxrDQ2pdZYZaGWRZnGEvs2-K92pPti1DlvltVXLi0pNGuFFGkcpNjSxpzPbB_88QhxUatFA12kHfoyKZQXLC5l8E3ryDn3yY0htJiqXUpBCsDJR5zNlgo8xQLv7ASVqSk5N2agpJ_U3uVTx9c13rNfQ7Ph_USVAzsCL7WD7Pz91dXszG_8BUq6jvw</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Villarreal, Pablo</creator><creator>Villarroel, Carlos A.</creator><creator>O'Donnell, Sam</creator><creator>Agier, Nicolas</creator><creator>Quintero‐Galvis, Julian F.</creator><creator>Peña, Tomas A.</creator><creator>Nespolo, Roberto F.</creator><creator>Fischer, Gilles</creator><creator>Varela, Cristian</creator><creator>Cubillos, Francisco A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Society for Applied Microbiology and Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3022-469X</orcidid><orcidid>https://orcid.org/0000-0002-2254-0417</orcidid><orcidid>https://orcid.org/0000-0001-5732-2682</orcidid></search><sort><creationdate>202212</creationdate><title>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</title><author>Villarreal, Pablo ; Villarroel, Carlos A. ; O'Donnell, Sam ; Agier, Nicolas ; Quintero‐Galvis, Julian F. ; Peña, Tomas A. ; Nespolo, Roberto F. ; Fischer, Gilles ; Varela, Cristian ; Cubillos, Francisco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Australia</topic><topic>Divergence</topic><topic>Ecological distribution</topic><topic>Ecological function</topic><topic>Ecological niches</topic><topic>Evolution</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Geographical distribution</topic><topic>Haplotypes</topic><topic>Human motion</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Niches</topic><topic>Phylogeny</topic><topic>Pleistocene</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villarreal, Pablo</creatorcontrib><creatorcontrib>Villarroel, Carlos A.</creatorcontrib><creatorcontrib>O'Donnell, Sam</creatorcontrib><creatorcontrib>Agier, Nicolas</creatorcontrib><creatorcontrib>Quintero‐Galvis, Julian F.</creatorcontrib><creatorcontrib>Peña, Tomas A.</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Fischer, Gilles</creatorcontrib><creatorcontrib>Varela, Cristian</creatorcontrib><creatorcontrib>Cubillos, Francisco A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villarreal, Pablo</au><au>Villarroel, Carlos A.</au><au>O'Donnell, Sam</au><au>Agier, Nicolas</au><au>Quintero‐Galvis, Julian F.</au><au>Peña, Tomas A.</au><au>Nespolo, Roberto F.</au><au>Fischer, Gilles</au><au>Varela, Cristian</au><au>Cubillos, Francisco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>5615</spage><epage>5629</epage><pages>5615-5629</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole‐genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64‐8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405‐51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene‐dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>35769023</pmid><doi>10.1111/1462-2920.16103</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3022-469X</orcidid><orcidid>https://orcid.org/0000-0002-2254-0417</orcidid><orcidid>https://orcid.org/0000-0001-5732-2682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2022-12, Vol.24 (12), p.5615-5629 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03873794v1 |
source | Wiley |
subjects | Australia Divergence Ecological distribution Ecological function Ecological niches Evolution Genetic diversity Genetic Variation Genetics Genomes Geographical distribution Haplotypes Human motion Humans Life Sciences Niches Phylogeny Pleistocene Saccharomyces cerevisiae Yeast Yeasts |
title | Late Pleistocene‐dated divergence between South Hemisphere populations of the non‐conventional yeast L. cidri |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Late%20Pleistocene%E2%80%90dated%20divergence%20between%20South%20Hemisphere%20populations%20of%20the%20non%E2%80%90conventional%20yeast%20L.%20cidri&rft.jtitle=Environmental%20microbiology&rft.au=Villarreal,%20Pablo&rft.date=2022-12&rft.volume=24&rft.issue=12&rft.spage=5615&rft.epage=5629&rft.pages=5615-5629&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16103&rft_dat=%3Cproquest_hal_p%3E2755408429%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4463-ce7a312e953ba2a412cf611958307ab444ab792f35d13e33aaed0ba66cef58103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755408429&rft_id=info:pmid/35769023&rfr_iscdi=true |