Loading…

Soil and climate differently impact NDVI patterns according to the season and the stand type

Several studies use satellite-based normalized difference vegetation index (NDVI) to monitor the impact of climate change on vegetation covers. Good understanding of the drivers of NDVI patterns is hindered by the difficulties in disentangling the effects of environmental factors from anthropogenic...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2019-02, Vol.651 (Pt 2), p.2874-2885
Main Authors: Piedallu, C., Chéret, V., Denux, J.P., Perez, V., Azcona, J.S., Seynave, I., Gégout, J.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several studies use satellite-based normalized difference vegetation index (NDVI) to monitor the impact of climate change on vegetation covers. Good understanding of the drivers of NDVI patterns is hindered by the difficulties in disentangling the effects of environmental factors from anthropogenic changes, by the limited number of environmental predictors studied, and by the diversity of responses according to periods and land covers. This study aims to improve our understanding of the different environmental drivers of NDVI spatial variations for different stand type characteristics of mountain and Mediterranean biomes. Using NDVI values extracted from MODIS Terra time series, we calculated Spring Greenness (SG) and annual Relative Greenness (RGRE) to depict spring and summer vegetation activity, respectively, in a contrasted area of 10,255 km2 located in the south of France. We modeled SG and RGRE at different scales, using 20 environmental predictors characterizing available energy, water supply, and nutrient supply calculated for different periods of the year. In spring, high minimum temperatures, good nitrogen availability, and acidic or neutral pH turned out to be determining for greenness, particularly for stand types located in altitude. In summer, an important soil water reserve and low temperatures promoted vegetation dynamics, particularly for stands located in areas with a Mediterranean climate. Our results show that NDVI dynamics was not only driven by climatic variability, and should not be studied using only mean temperature and rainfall. They highlight that different environmental factors act complementarily, and that soil parameters characterizing water stress and soil nutrition should be taken into account. While the factors limiting NDVI values varied according to the season and the position of the stands along the ecological gradients, we identified a global temperature and water-stress threshold when considering the whole vegetation. [Display omitted] •NDVI indices were modeled for different seasons using 20 environmental predictors.•In spring, low temperatures, nitrogen availability, and pH limit greenness.•In summer, low soil water reserve and high temperatures are the main constraints.•The factors limiting vegetation dynamics vary according to the stands type.•Our findings are helpful to adapt our forests to future environmental conditions.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.10.052