Loading…

Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions

Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2022-09, Vol.30 (5), p.2084-2099
Main Authors: Dollar, Robert Austin, Thibault, Laurent, Laraki, Mohamed, Sciarretta, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3
container_end_page 2099
container_issue 5
container_start_page 2084
container_title IEEE transactions on control systems technology
container_volume 30
creator Dollar, Robert Austin
Thibault, Laurent
Laraki, Mohamed
Sciarretta, Antonio
description Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.
doi_str_mv 10.1109/TCST.2021.3133867
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03911097v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9663093</ieee_id><sourcerecordid>2704098068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKc_QHwJ-ORDZ26TJu3jqNMNpkMsvoY0TbeMrZlJN9Rfb2vHnu65l-8cLicIbgGPAHD6mGcf-SjCEYwIEJIwfhYMII6TECcsPm81ZiRkMWGXwZX3a4yBxhEfBO8TZcMnZw6mXiJbocxud057b2wdzpa1aVqBPvXKqI32qLHo1dRma341ejONs0tdo8W3KTWabM2_y18HF5XceH1znMMgf57k2TScL15m2XgeqoinTagKXBAWg4wkUMk40ILydi14gaEsOdeMcl7SMmEKCqorpUDSlBaVJDSRZBg89LEruRE7Z7bS_QgrjZiO56K7YZJ2zfADtOx9z-6c_dpr34i13bu6_U5EHFOcJpglLQU9pZz13unqFAtYdFGiK1l0JYtjya3nrvcYrfWJTxkjOCXkDxnkd50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704098068</pqid></control><display><type>article</type><title>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</title><source>IEEE Xplore (Online service)</source><creator>Dollar, Robert Austin ; Thibault, Laurent ; Laraki, Mohamed ; Sciarretta, Antonio</creator><creatorcontrib>Dollar, Robert Austin ; Thibault, Laurent ; Laraki, Mohamed ; Sciarretta, Antonio</creatorcontrib><description>Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2021.3133867</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Acid rain ; Air pollution ; Applications programs ; Carbon dioxide ; diesel engines ; Dynamic programming ; Engineering Sciences ; Engines ; Environmental Sciences ; Fuel consumption ; Fuels ; Gears ; Health hazards ; Ignition ; Mobile computing ; Nitrogen ; Nitrogen oxides ; Optimal control ; Pollutants ; Pollution measurement ; Public health ; Rational functions ; smart devices ; Smog ; Trajectory ; trajectory optimization ; Urban areas ; Vehicle dynamics</subject><ispartof>IEEE transactions on control systems technology, 2022-09, Vol.30 (5), p.2084-2099</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3</cites><orcidid>0000-0002-5994-4327 ; 0000-0003-2972-5673 ; 0000-0002-2618-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9663093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://ifp.hal.science/hal-03911097$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dollar, Robert Austin</creatorcontrib><creatorcontrib>Thibault, Laurent</creatorcontrib><creatorcontrib>Laraki, Mohamed</creatorcontrib><creatorcontrib>Sciarretta, Antonio</creatorcontrib><title>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.</description><subject>Acceleration</subject><subject>Acid rain</subject><subject>Air pollution</subject><subject>Applications programs</subject><subject>Carbon dioxide</subject><subject>diesel engines</subject><subject>Dynamic programming</subject><subject>Engineering Sciences</subject><subject>Engines</subject><subject>Environmental Sciences</subject><subject>Fuel consumption</subject><subject>Fuels</subject><subject>Gears</subject><subject>Health hazards</subject><subject>Ignition</subject><subject>Mobile computing</subject><subject>Nitrogen</subject><subject>Nitrogen oxides</subject><subject>Optimal control</subject><subject>Pollutants</subject><subject>Pollution measurement</subject><subject>Public health</subject><subject>Rational functions</subject><subject>smart devices</subject><subject>Smog</subject><subject>Trajectory</subject><subject>trajectory optimization</subject><subject>Urban areas</subject><subject>Vehicle dynamics</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYsoOKc_QHwJ-ORDZ26TJu3jqNMNpkMsvoY0TbeMrZlJN9Rfb2vHnu65l-8cLicIbgGPAHD6mGcf-SjCEYwIEJIwfhYMII6TECcsPm81ZiRkMWGXwZX3a4yBxhEfBO8TZcMnZw6mXiJbocxud057b2wdzpa1aVqBPvXKqI32qLHo1dRma341ejONs0tdo8W3KTWabM2_y18HF5XceH1znMMgf57k2TScL15m2XgeqoinTagKXBAWg4wkUMk40ILydi14gaEsOdeMcl7SMmEKCqorpUDSlBaVJDSRZBg89LEruRE7Z7bS_QgrjZiO56K7YZJ2zfADtOx9z-6c_dpr34i13bu6_U5EHFOcJpglLQU9pZz13unqFAtYdFGiK1l0JYtjya3nrvcYrfWJTxkjOCXkDxnkd50</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Dollar, Robert Austin</creator><creator>Thibault, Laurent</creator><creator>Laraki, Mohamed</creator><creator>Sciarretta, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5994-4327</orcidid><orcidid>https://orcid.org/0000-0003-2972-5673</orcidid><orcidid>https://orcid.org/0000-0002-2618-3066</orcidid></search><sort><creationdate>20220901</creationdate><title>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</title><author>Dollar, Robert Austin ; Thibault, Laurent ; Laraki, Mohamed ; Sciarretta, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Acid rain</topic><topic>Air pollution</topic><topic>Applications programs</topic><topic>Carbon dioxide</topic><topic>diesel engines</topic><topic>Dynamic programming</topic><topic>Engineering Sciences</topic><topic>Engines</topic><topic>Environmental Sciences</topic><topic>Fuel consumption</topic><topic>Fuels</topic><topic>Gears</topic><topic>Health hazards</topic><topic>Ignition</topic><topic>Mobile computing</topic><topic>Nitrogen</topic><topic>Nitrogen oxides</topic><topic>Optimal control</topic><topic>Pollutants</topic><topic>Pollution measurement</topic><topic>Public health</topic><topic>Rational functions</topic><topic>smart devices</topic><topic>Smog</topic><topic>Trajectory</topic><topic>trajectory optimization</topic><topic>Urban areas</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dollar, Robert Austin</creatorcontrib><creatorcontrib>Thibault, Laurent</creatorcontrib><creatorcontrib>Laraki, Mohamed</creatorcontrib><creatorcontrib>Sciarretta, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dollar, Robert Austin</au><au>Thibault, Laurent</au><au>Laraki, Mohamed</au><au>Sciarretta, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>30</volume><issue>5</issue><spage>2084</spage><epage>2099</epage><pages>2084-2099</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2021.3133867</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5994-4327</orcidid><orcidid>https://orcid.org/0000-0003-2972-5673</orcidid><orcidid>https://orcid.org/0000-0002-2618-3066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2022-09, Vol.30 (5), p.2084-2099
issn 1063-6536
1558-0865
language eng
recordid cdi_hal_primary_oai_HAL_hal_03911097v1
source IEEE Xplore (Online service)
subjects Acceleration
Acid rain
Air pollution
Applications programs
Carbon dioxide
diesel engines
Dynamic programming
Engineering Sciences
Engines
Environmental Sciences
Fuel consumption
Fuels
Gears
Health hazards
Ignition
Mobile computing
Nitrogen
Nitrogen oxides
Optimal control
Pollutants
Pollution measurement
Public health
Rational functions
smart devices
Smog
Trajectory
trajectory optimization
Urban areas
Vehicle dynamics
title Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco-Driving%20of%20Compression-Ignition%20Vehicles%20to%20Minimize%20Nitrogen%20Oxide%20Emissions&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Dollar,%20Robert%20Austin&rft.date=2022-09-01&rft.volume=30&rft.issue=5&rft.spage=2084&rft.epage=2099&rft.pages=2084-2099&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2021.3133867&rft_dat=%3Cproquest_hal_p%3E2704098068%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704098068&rft_id=info:pmid/&rft_ieee_id=9663093&rfr_iscdi=true