Loading…
Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions
Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen...
Saved in:
Published in: | IEEE transactions on control systems technology 2022-09, Vol.30 (5), p.2084-2099 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3 |
container_end_page | 2099 |
container_issue | 5 |
container_start_page | 2084 |
container_title | IEEE transactions on control systems technology |
container_volume | 30 |
creator | Dollar, Robert Austin Thibault, Laurent Laraki, Mohamed Sciarretta, Antonio |
description | Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions. |
doi_str_mv | 10.1109/TCST.2021.3133867 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03911097v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9663093</ieee_id><sourcerecordid>2704098068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKc_QHwJ-ORDZ26TJu3jqNMNpkMsvoY0TbeMrZlJN9Rfb2vHnu65l-8cLicIbgGPAHD6mGcf-SjCEYwIEJIwfhYMII6TECcsPm81ZiRkMWGXwZX3a4yBxhEfBO8TZcMnZw6mXiJbocxud057b2wdzpa1aVqBPvXKqI32qLHo1dRma341ejONs0tdo8W3KTWabM2_y18HF5XceH1znMMgf57k2TScL15m2XgeqoinTagKXBAWg4wkUMk40ILydi14gaEsOdeMcl7SMmEKCqorpUDSlBaVJDSRZBg89LEruRE7Z7bS_QgrjZiO56K7YZJ2zfADtOx9z-6c_dpr34i13bu6_U5EHFOcJpglLQU9pZz13unqFAtYdFGiK1l0JYtjya3nrvcYrfWJTxkjOCXkDxnkd50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704098068</pqid></control><display><type>article</type><title>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</title><source>IEEE Xplore (Online service)</source><creator>Dollar, Robert Austin ; Thibault, Laurent ; Laraki, Mohamed ; Sciarretta, Antonio</creator><creatorcontrib>Dollar, Robert Austin ; Thibault, Laurent ; Laraki, Mohamed ; Sciarretta, Antonio</creatorcontrib><description>Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2021.3133867</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Acid rain ; Air pollution ; Applications programs ; Carbon dioxide ; diesel engines ; Dynamic programming ; Engineering Sciences ; Engines ; Environmental Sciences ; Fuel consumption ; Fuels ; Gears ; Health hazards ; Ignition ; Mobile computing ; Nitrogen ; Nitrogen oxides ; Optimal control ; Pollutants ; Pollution measurement ; Public health ; Rational functions ; smart devices ; Smog ; Trajectory ; trajectory optimization ; Urban areas ; Vehicle dynamics</subject><ispartof>IEEE transactions on control systems technology, 2022-09, Vol.30 (5), p.2084-2099</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3</cites><orcidid>0000-0002-5994-4327 ; 0000-0003-2972-5673 ; 0000-0002-2618-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9663093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://ifp.hal.science/hal-03911097$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dollar, Robert Austin</creatorcontrib><creatorcontrib>Thibault, Laurent</creatorcontrib><creatorcontrib>Laraki, Mohamed</creatorcontrib><creatorcontrib>Sciarretta, Antonio</creatorcontrib><title>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.</description><subject>Acceleration</subject><subject>Acid rain</subject><subject>Air pollution</subject><subject>Applications programs</subject><subject>Carbon dioxide</subject><subject>diesel engines</subject><subject>Dynamic programming</subject><subject>Engineering Sciences</subject><subject>Engines</subject><subject>Environmental Sciences</subject><subject>Fuel consumption</subject><subject>Fuels</subject><subject>Gears</subject><subject>Health hazards</subject><subject>Ignition</subject><subject>Mobile computing</subject><subject>Nitrogen</subject><subject>Nitrogen oxides</subject><subject>Optimal control</subject><subject>Pollutants</subject><subject>Pollution measurement</subject><subject>Public health</subject><subject>Rational functions</subject><subject>smart devices</subject><subject>Smog</subject><subject>Trajectory</subject><subject>trajectory optimization</subject><subject>Urban areas</subject><subject>Vehicle dynamics</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYsoOKc_QHwJ-ORDZ26TJu3jqNMNpkMsvoY0TbeMrZlJN9Rfb2vHnu65l-8cLicIbgGPAHD6mGcf-SjCEYwIEJIwfhYMII6TECcsPm81ZiRkMWGXwZX3a4yBxhEfBO8TZcMnZw6mXiJbocxud057b2wdzpa1aVqBPvXKqI32qLHo1dRma341ejONs0tdo8W3KTWabM2_y18HF5XceH1znMMgf57k2TScL15m2XgeqoinTagKXBAWg4wkUMk40ILydi14gaEsOdeMcl7SMmEKCqorpUDSlBaVJDSRZBg89LEruRE7Z7bS_QgrjZiO56K7YZJ2zfADtOx9z-6c_dpr34i13bu6_U5EHFOcJpglLQU9pZz13unqFAtYdFGiK1l0JYtjya3nrvcYrfWJTxkjOCXkDxnkd50</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Dollar, Robert Austin</creator><creator>Thibault, Laurent</creator><creator>Laraki, Mohamed</creator><creator>Sciarretta, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5994-4327</orcidid><orcidid>https://orcid.org/0000-0003-2972-5673</orcidid><orcidid>https://orcid.org/0000-0002-2618-3066</orcidid></search><sort><creationdate>20220901</creationdate><title>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</title><author>Dollar, Robert Austin ; Thibault, Laurent ; Laraki, Mohamed ; Sciarretta, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Acid rain</topic><topic>Air pollution</topic><topic>Applications programs</topic><topic>Carbon dioxide</topic><topic>diesel engines</topic><topic>Dynamic programming</topic><topic>Engineering Sciences</topic><topic>Engines</topic><topic>Environmental Sciences</topic><topic>Fuel consumption</topic><topic>Fuels</topic><topic>Gears</topic><topic>Health hazards</topic><topic>Ignition</topic><topic>Mobile computing</topic><topic>Nitrogen</topic><topic>Nitrogen oxides</topic><topic>Optimal control</topic><topic>Pollutants</topic><topic>Pollution measurement</topic><topic>Public health</topic><topic>Rational functions</topic><topic>smart devices</topic><topic>Smog</topic><topic>Trajectory</topic><topic>trajectory optimization</topic><topic>Urban areas</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dollar, Robert Austin</creatorcontrib><creatorcontrib>Thibault, Laurent</creatorcontrib><creatorcontrib>Laraki, Mohamed</creatorcontrib><creatorcontrib>Sciarretta, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dollar, Robert Austin</au><au>Thibault, Laurent</au><au>Laraki, Mohamed</au><au>Sciarretta, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>30</volume><issue>5</issue><spage>2084</spage><epage>2099</epage><pages>2084-2099</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Emissions of nitrogen oxides from road vehicles pose a public health hazard because of their role in smog and acid rain formation. Although a great body of research exists on driving techniques to reduce vehicular fuel use and carbon dioxide emissions, solutions for other pollutants such as nitrogen oxides are not nearly as well studied. Unfortunately, nitrogen oxides do not necessarily trend with fuel consumption as carbon dioxide emissions do and the fuel-minimal solution may produce excess nitrogen oxides. This article addresses the emissions eco-driving problem for compression-ignition engines with EGR and SCR using an optimal control approach based on Pontryagin's minimum principle (PMP). In anticipation of eco-coaching applications, a simplified piecewise-affine model results in optimal acceleration as rational functions of speed. The effectiveness of this approach is compared to dynamic programming (DP) and heuristic rules from an available eco-driving mobile app. When applied to a real-world human driving dataset from an urban area, the proposed technique reduced modeled emissions of nitrogen oxides by 35%-36% while simultaneously reducing carbon dioxide emissions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2021.3133867</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5994-4327</orcidid><orcidid>https://orcid.org/0000-0003-2972-5673</orcidid><orcidid>https://orcid.org/0000-0002-2618-3066</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2022-09, Vol.30 (5), p.2084-2099 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03911097v1 |
source | IEEE Xplore (Online service) |
subjects | Acceleration Acid rain Air pollution Applications programs Carbon dioxide diesel engines Dynamic programming Engineering Sciences Engines Environmental Sciences Fuel consumption Fuels Gears Health hazards Ignition Mobile computing Nitrogen Nitrogen oxides Optimal control Pollutants Pollution measurement Public health Rational functions smart devices Smog Trajectory trajectory optimization Urban areas Vehicle dynamics |
title | Eco-Driving of Compression-Ignition Vehicles to Minimize Nitrogen Oxide Emissions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco-Driving%20of%20Compression-Ignition%20Vehicles%20to%20Minimize%20Nitrogen%20Oxide%20Emissions&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Dollar,%20Robert%20Austin&rft.date=2022-09-01&rft.volume=30&rft.issue=5&rft.spage=2084&rft.epage=2099&rft.pages=2084-2099&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2021.3133867&rft_dat=%3Cproquest_hal_p%3E2704098068%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-cb0b3651a2a14a6714b4751ab7b01dd77e6477d4d86c1b4efcc1a494bfa348a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704098068&rft_id=info:pmid/&rft_ieee_id=9663093&rfr_iscdi=true |