Loading…

Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation

In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint stat...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis: real world applications 2023-08, Vol.72, p.103836, Article 103836
Main Authors: Bretin, Élie, Chapelat, Julien, Douanla-Lontsi, Charlie, Homolle, Thomas, Renard, Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43
container_end_page
container_issue
container_start_page 103836
container_title Nonlinear analysis: real world applications
container_volume 72
creator Bretin, Élie
Chapelat, Julien
Douanla-Lontsi, Charlie
Homolle, Thomas
Renard, Yves
description In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.
doi_str_mv 10.1016/j.nonrwa.2023.103836
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03936245v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121823000068</els_id><sourcerecordid>oai_HAL_hal_03936245v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsD7-gYtsXUxNJo_OuBBKUSsUXajrkElvbMo0KUmY2n9vhhGXru7lcM653K8obgieEkzE3XbqvAsHNa1wRbNEaypOigmpZ3XJZ6Q5zTsTdUkqUp8XFzFuMSYzQsmkOLxv1B5QBBdtsr1NR6Sc6o7RRuRN3hF0KiarkfYuKZ3QPvi2g909WnjXQ_gCp2Gwpg2gV5uizrNVEdbIWGcT5ALYgUtI7XP02-5Ust5dFWdGdRGuf-dl8fn0-LFYlqu355fFfFVqSnkqOaENZrRhrRAc8yziaka54IJxpprW1JwAYy0zlIBhGGPFTG3aal21AlpGL4vbsXejOrkP-Xo4Sq-sXM5XctAwbaioGO9J9rLRq4OPMYD5CxAsB9ByK0fQcgAtR9A59jDGIP_RWwgyajtQWdsAOsm1t_8X_ADd_Yl6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</title><source>ScienceDirect Journals</source><creator>Bretin, Élie ; Chapelat, Julien ; Douanla-Lontsi, Charlie ; Homolle, Thomas ; Renard, Yves</creator><creatorcontrib>Bretin, Élie ; Chapelat, Julien ; Douanla-Lontsi, Charlie ; Homolle, Thomas ; Renard, Yves</creatorcontrib><description>In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2023.103836</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adjoint state method ; Conical derivative ; Engineering Sciences ; Mathematics ; Nitsche’s method ; Numerical Analysis ; Shape gradient ; Shape optimization ; Unilateral contact</subject><ispartof>Nonlinear analysis: real world applications, 2023-08, Vol.72, p.103836, Article 103836</ispartof><rights>2023 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43</cites><orcidid>0000-0003-4701-4488 ; 0000-0003-1319-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03936245$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bretin, Élie</creatorcontrib><creatorcontrib>Chapelat, Julien</creatorcontrib><creatorcontrib>Douanla-Lontsi, Charlie</creatorcontrib><creatorcontrib>Homolle, Thomas</creatorcontrib><creatorcontrib>Renard, Yves</creatorcontrib><title>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</title><title>Nonlinear analysis: real world applications</title><description>In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.</description><subject>Adjoint state method</subject><subject>Conical derivative</subject><subject>Engineering Sciences</subject><subject>Mathematics</subject><subject>Nitsche’s method</subject><subject>Numerical Analysis</subject><subject>Shape gradient</subject><subject>Shape optimization</subject><subject>Unilateral contact</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsD7-gYtsXUxNJo_OuBBKUSsUXajrkElvbMo0KUmY2n9vhhGXru7lcM653K8obgieEkzE3XbqvAsHNa1wRbNEaypOigmpZ3XJZ6Q5zTsTdUkqUp8XFzFuMSYzQsmkOLxv1B5QBBdtsr1NR6Sc6o7RRuRN3hF0KiarkfYuKZ3QPvi2g909WnjXQ_gCp2Gwpg2gV5uizrNVEdbIWGcT5ALYgUtI7XP02-5Ust5dFWdGdRGuf-dl8fn0-LFYlqu355fFfFVqSnkqOaENZrRhrRAc8yziaka54IJxpprW1JwAYy0zlIBhGGPFTG3aal21AlpGL4vbsXejOrkP-Xo4Sq-sXM5XctAwbaioGO9J9rLRq4OPMYD5CxAsB9ByK0fQcgAtR9A59jDGIP_RWwgyajtQWdsAOsm1t_8X_ADd_Yl6</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Bretin, Élie</creator><creator>Chapelat, Julien</creator><creator>Douanla-Lontsi, Charlie</creator><creator>Homolle, Thomas</creator><creator>Renard, Yves</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4701-4488</orcidid><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></search><sort><creationdate>202308</creationdate><title>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</title><author>Bretin, Élie ; Chapelat, Julien ; Douanla-Lontsi, Charlie ; Homolle, Thomas ; Renard, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adjoint state method</topic><topic>Conical derivative</topic><topic>Engineering Sciences</topic><topic>Mathematics</topic><topic>Nitsche’s method</topic><topic>Numerical Analysis</topic><topic>Shape gradient</topic><topic>Shape optimization</topic><topic>Unilateral contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretin, Élie</creatorcontrib><creatorcontrib>Chapelat, Julien</creatorcontrib><creatorcontrib>Douanla-Lontsi, Charlie</creatorcontrib><creatorcontrib>Homolle, Thomas</creatorcontrib><creatorcontrib>Renard, Yves</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretin, Élie</au><au>Chapelat, Julien</au><au>Douanla-Lontsi, Charlie</au><au>Homolle, Thomas</au><au>Renard, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2023-08</date><risdate>2023</risdate><volume>72</volume><spage>103836</spage><pages>103836-</pages><artnum>103836</artnum><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2023.103836</doi><orcidid>https://orcid.org/0000-0003-4701-4488</orcidid><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2023-08, Vol.72, p.103836, Article 103836
issn 1468-1218
1878-5719
language eng
recordid cdi_hal_primary_oai_HAL_hal_03936245v1
source ScienceDirect Journals
subjects Adjoint state method
Conical derivative
Engineering Sciences
Mathematics
Nitsche’s method
Numerical Analysis
Shape gradient
Shape optimization
Unilateral contact
title Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20sensitivity%20analysis%20of%20an%20elastic%20contact%20problem:%20Convergence%20of%20the%20Nitsche%20based%20finite%20element%20approximation&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Bretin,%20%C3%89lie&rft.date=2023-08&rft.volume=72&rft.spage=103836&rft.pages=103836-&rft.artnum=103836&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2023.103836&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03936245v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true