Loading…
Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation
In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint stat...
Saved in:
Published in: | Nonlinear analysis: real world applications 2023-08, Vol.72, p.103836, Article 103836 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43 |
container_end_page | |
container_issue | |
container_start_page | 103836 |
container_title | Nonlinear analysis: real world applications |
container_volume | 72 |
creator | Bretin, Élie Chapelat, Julien Douanla-Lontsi, Charlie Homolle, Thomas Renard, Yves |
description | In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability. |
doi_str_mv | 10.1016/j.nonrwa.2023.103836 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03936245v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121823000068</els_id><sourcerecordid>oai_HAL_hal_03936245v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsD7-gYtsXUxNJo_OuBBKUSsUXajrkElvbMo0KUmY2n9vhhGXru7lcM653K8obgieEkzE3XbqvAsHNa1wRbNEaypOigmpZ3XJZ6Q5zTsTdUkqUp8XFzFuMSYzQsmkOLxv1B5QBBdtsr1NR6Sc6o7RRuRN3hF0KiarkfYuKZ3QPvi2g909WnjXQ_gCp2Gwpg2gV5uizrNVEdbIWGcT5ALYgUtI7XP02-5Ust5dFWdGdRGuf-dl8fn0-LFYlqu355fFfFVqSnkqOaENZrRhrRAc8yziaka54IJxpprW1JwAYy0zlIBhGGPFTG3aal21AlpGL4vbsXejOrkP-Xo4Sq-sXM5XctAwbaioGO9J9rLRq4OPMYD5CxAsB9ByK0fQcgAtR9A59jDGIP_RWwgyajtQWdsAOsm1t_8X_ADd_Yl6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</title><source>ScienceDirect Journals</source><creator>Bretin, Élie ; Chapelat, Julien ; Douanla-Lontsi, Charlie ; Homolle, Thomas ; Renard, Yves</creator><creatorcontrib>Bretin, Élie ; Chapelat, Julien ; Douanla-Lontsi, Charlie ; Homolle, Thomas ; Renard, Yves</creatorcontrib><description>In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2023.103836</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adjoint state method ; Conical derivative ; Engineering Sciences ; Mathematics ; Nitsche’s method ; Numerical Analysis ; Shape gradient ; Shape optimization ; Unilateral contact</subject><ispartof>Nonlinear analysis: real world applications, 2023-08, Vol.72, p.103836, Article 103836</ispartof><rights>2023 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43</cites><orcidid>0000-0003-4701-4488 ; 0000-0003-1319-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03936245$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bretin, Élie</creatorcontrib><creatorcontrib>Chapelat, Julien</creatorcontrib><creatorcontrib>Douanla-Lontsi, Charlie</creatorcontrib><creatorcontrib>Homolle, Thomas</creatorcontrib><creatorcontrib>Renard, Yves</creatorcontrib><title>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</title><title>Nonlinear analysis: real world applications</title><description>In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.</description><subject>Adjoint state method</subject><subject>Conical derivative</subject><subject>Engineering Sciences</subject><subject>Mathematics</subject><subject>Nitsche’s method</subject><subject>Numerical Analysis</subject><subject>Shape gradient</subject><subject>Shape optimization</subject><subject>Unilateral contact</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsD7-gYtsXUxNJo_OuBBKUSsUXajrkElvbMo0KUmY2n9vhhGXru7lcM653K8obgieEkzE3XbqvAsHNa1wRbNEaypOigmpZ3XJZ6Q5zTsTdUkqUp8XFzFuMSYzQsmkOLxv1B5QBBdtsr1NR6Sc6o7RRuRN3hF0KiarkfYuKZ3QPvi2g909WnjXQ_gCp2Gwpg2gV5uizrNVEdbIWGcT5ALYgUtI7XP02-5Ust5dFWdGdRGuf-dl8fn0-LFYlqu355fFfFVqSnkqOaENZrRhrRAc8yziaka54IJxpprW1JwAYy0zlIBhGGPFTG3aal21AlpGL4vbsXejOrkP-Xo4Sq-sXM5XctAwbaioGO9J9rLRq4OPMYD5CxAsB9ByK0fQcgAtR9A59jDGIP_RWwgyajtQWdsAOsm1t_8X_ADd_Yl6</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Bretin, Élie</creator><creator>Chapelat, Julien</creator><creator>Douanla-Lontsi, Charlie</creator><creator>Homolle, Thomas</creator><creator>Renard, Yves</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4701-4488</orcidid><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></search><sort><creationdate>202308</creationdate><title>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</title><author>Bretin, Élie ; Chapelat, Julien ; Douanla-Lontsi, Charlie ; Homolle, Thomas ; Renard, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adjoint state method</topic><topic>Conical derivative</topic><topic>Engineering Sciences</topic><topic>Mathematics</topic><topic>Nitsche’s method</topic><topic>Numerical Analysis</topic><topic>Shape gradient</topic><topic>Shape optimization</topic><topic>Unilateral contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretin, Élie</creatorcontrib><creatorcontrib>Chapelat, Julien</creatorcontrib><creatorcontrib>Douanla-Lontsi, Charlie</creatorcontrib><creatorcontrib>Homolle, Thomas</creatorcontrib><creatorcontrib>Renard, Yves</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretin, Élie</au><au>Chapelat, Julien</au><au>Douanla-Lontsi, Charlie</au><au>Homolle, Thomas</au><au>Renard, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2023-08</date><risdate>2023</risdate><volume>72</volume><spage>103836</spage><pages>103836-</pages><artnum>103836</artnum><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2023.103836</doi><orcidid>https://orcid.org/0000-0003-4701-4488</orcidid><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2023-08, Vol.72, p.103836, Article 103836 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03936245v1 |
source | ScienceDirect Journals |
subjects | Adjoint state method Conical derivative Engineering Sciences Mathematics Nitsche’s method Numerical Analysis Shape gradient Shape optimization Unilateral contact |
title | Shape sensitivity analysis of an elastic contact problem: Convergence of the Nitsche based finite element approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20sensitivity%20analysis%20of%20an%20elastic%20contact%20problem:%20Convergence%20of%20the%20Nitsche%20based%20finite%20element%20approximation&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Bretin,%20%C3%89lie&rft.date=2023-08&rft.volume=72&rft.spage=103836&rft.pages=103836-&rft.artnum=103836&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2023.103836&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03936245v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-513904394b66505c3302735656454a9bf851e44b4f31ef4000a4f8fb2d2b6eb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |