Loading…

Martens hardness of Constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation

•Hardness of the substrate changes according to the film thickness (Constantan).•Application of indentation size effect models allows an adequate representation of data.•Stability of constantan martens hardness value when considering the indenter tip defect.•The effect of cracks in substrate on film...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2023-03, Vol.768, p.139712, Article 139712
Main Authors: Dziri, Ayyoub, Montagne, Alex, Roudet, Francine, Ziouche, Katir, Chicot, Didier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23
cites cdi_FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23
container_end_page
container_issue
container_start_page 139712
container_title Thin solid films
container_volume 768
creator Dziri, Ayyoub
Montagne, Alex
Roudet, Francine
Ziouche, Katir
Chicot, Didier
description •Hardness of the substrate changes according to the film thickness (Constantan).•Application of indentation size effect models allows an adequate representation of data.•Stability of constantan martens hardness value when considering the indenter tip defect.•The effect of cracks in substrate on film behaviours.•Containment of the film between indenter and substrate effect on film behaviours. This work presents a mechanical study by nanoindentation of Constantan thin films deposited by cathodic sputtering technique with an intermediate thin adhesion layer of titanium on a (100) silicon wafer substrate. A methodology based on a modified contact area function is proposed for a suitable processing of the nanoindentation data in order to extract the Martens hardness both of the substrate, titanium layer and Constantan films. The raw data of the substrate Martens hardness have been studied using the most useful models among them those of Nix & Gao, Li & Bradt and Bull & Page showing a significant indentation size effect. However, when considering the tip defect length in the Martens hardness computation, the corrected values are found constant and no indentation size effect occurs. Within this objective, an accurate determination of the tip defect length is required. Its value has been determined both with a correlation between the contact area function of Oliver & Pharr and the improved model of Chicot et al. and also with the self-calibration method proposed by Chicot et al. The tip defect length is afterwards implemented in the model of Jönsson & Hogmark modified by Rahmoun et al. for the hardness determination of the titanium layer and the Constantan thin films. As a main result, the Martens hardness of the titanium layer and of the substrate are found equal to 8 GPa thus allowing to neglect the influence of the titanium layer in the film hardness determination. As a main result, the hardness of the 4 Constantan films is constant whereas the substrate hardness changes with the film thickness. This unexpected behavior is related to the brittleness of the substrate where cracks are observed at the interface and by the film compacting which is trapped between the rigid indenter and the hard substrate.
doi_str_mv 10.1016/j.tsf.2023.139712
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03951065v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609023000329</els_id><sourcerecordid>S0040609023000329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFuO9rDrTJLudvVUin8KFQ_qOWTThKZ0syWJFb-9KSsehYEH895vYB4h1wglAla32zJFWzJgvETe1MhOyAhndVOwmuMpGQEIKCpo4JxcxLgFAGSMj0h6USEZH-lGhbU3MdLe0kXvY1I-D00b56l1uy4bnt4gwIS-OfqlrAl3dNntQ38wnfGJ5pzuM6MTVcEoaj-9Ti5D2fDK986vc0wdV5fkzKpdNFe_OiYfjw_vi-di9fq0XMxXhea1SEVdW45ct8g5MlFNRQWVMLaeMUDkQmS1bAba2rZqRMtUa9qWWzGdMVWxlvExmQx3N2on98F1KnzLXjn5PF_J4w54M0WopgfMWRyyOvQxBmP_AAR5rFhuZa5YHiuWQ8WZuR8Yk584OBNk1M54bdYuGJ3kunf_0D9jtoLy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Martens hardness of Constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation</title><source>ScienceDirect Freedom Collection</source><creator>Dziri, Ayyoub ; Montagne, Alex ; Roudet, Francine ; Ziouche, Katir ; Chicot, Didier</creator><creatorcontrib>Dziri, Ayyoub ; Montagne, Alex ; Roudet, Francine ; Ziouche, Katir ; Chicot, Didier</creatorcontrib><description>•Hardness of the substrate changes according to the film thickness (Constantan).•Application of indentation size effect models allows an adequate representation of data.•Stability of constantan martens hardness value when considering the indenter tip defect.•The effect of cracks in substrate on film behaviours.•Containment of the film between indenter and substrate effect on film behaviours. This work presents a mechanical study by nanoindentation of Constantan thin films deposited by cathodic sputtering technique with an intermediate thin adhesion layer of titanium on a (100) silicon wafer substrate. A methodology based on a modified contact area function is proposed for a suitable processing of the nanoindentation data in order to extract the Martens hardness both of the substrate, titanium layer and Constantan films. The raw data of the substrate Martens hardness have been studied using the most useful models among them those of Nix &amp; Gao, Li &amp; Bradt and Bull &amp; Page showing a significant indentation size effect. However, when considering the tip defect length in the Martens hardness computation, the corrected values are found constant and no indentation size effect occurs. Within this objective, an accurate determination of the tip defect length is required. Its value has been determined both with a correlation between the contact area function of Oliver &amp; Pharr and the improved model of Chicot et al. and also with the self-calibration method proposed by Chicot et al. The tip defect length is afterwards implemented in the model of Jönsson &amp; Hogmark modified by Rahmoun et al. for the hardness determination of the titanium layer and the Constantan thin films. As a main result, the Martens hardness of the titanium layer and of the substrate are found equal to 8 GPa thus allowing to neglect the influence of the titanium layer in the film hardness determination. As a main result, the hardness of the 4 Constantan films is constant whereas the substrate hardness changes with the film thickness. This unexpected behavior is related to the brittleness of the substrate where cracks are observed at the interface and by the film compacting which is trapped between the rigid indenter and the hard substrate.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2023.139712</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Constantan thin film ; Engineering Sciences ; Indentation size effect ; Instrumented nanoindentation ; Martens hardness ; Tip defect</subject><ispartof>Thin solid films, 2023-03, Vol.768, p.139712, Article 139712</ispartof><rights>2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23</citedby><cites>FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23</cites><orcidid>0000-0002-5203-3168 ; 0000-0002-8689-1013 ; 0000-0002-3374-8133 ; 0000-0001-5118-7870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03951065$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dziri, Ayyoub</creatorcontrib><creatorcontrib>Montagne, Alex</creatorcontrib><creatorcontrib>Roudet, Francine</creatorcontrib><creatorcontrib>Ziouche, Katir</creatorcontrib><creatorcontrib>Chicot, Didier</creatorcontrib><title>Martens hardness of Constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation</title><title>Thin solid films</title><description>•Hardness of the substrate changes according to the film thickness (Constantan).•Application of indentation size effect models allows an adequate representation of data.•Stability of constantan martens hardness value when considering the indenter tip defect.•The effect of cracks in substrate on film behaviours.•Containment of the film between indenter and substrate effect on film behaviours. This work presents a mechanical study by nanoindentation of Constantan thin films deposited by cathodic sputtering technique with an intermediate thin adhesion layer of titanium on a (100) silicon wafer substrate. A methodology based on a modified contact area function is proposed for a suitable processing of the nanoindentation data in order to extract the Martens hardness both of the substrate, titanium layer and Constantan films. The raw data of the substrate Martens hardness have been studied using the most useful models among them those of Nix &amp; Gao, Li &amp; Bradt and Bull &amp; Page showing a significant indentation size effect. However, when considering the tip defect length in the Martens hardness computation, the corrected values are found constant and no indentation size effect occurs. Within this objective, an accurate determination of the tip defect length is required. Its value has been determined both with a correlation between the contact area function of Oliver &amp; Pharr and the improved model of Chicot et al. and also with the self-calibration method proposed by Chicot et al. The tip defect length is afterwards implemented in the model of Jönsson &amp; Hogmark modified by Rahmoun et al. for the hardness determination of the titanium layer and the Constantan thin films. As a main result, the Martens hardness of the titanium layer and of the substrate are found equal to 8 GPa thus allowing to neglect the influence of the titanium layer in the film hardness determination. As a main result, the hardness of the 4 Constantan films is constant whereas the substrate hardness changes with the film thickness. This unexpected behavior is related to the brittleness of the substrate where cracks are observed at the interface and by the film compacting which is trapped between the rigid indenter and the hard substrate.</description><subject>Constantan thin film</subject><subject>Engineering Sciences</subject><subject>Indentation size effect</subject><subject>Instrumented nanoindentation</subject><subject>Martens hardness</subject><subject>Tip defect</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFuO9rDrTJLudvVUin8KFQ_qOWTThKZ0syWJFb-9KSsehYEH895vYB4h1wglAla32zJFWzJgvETe1MhOyAhndVOwmuMpGQEIKCpo4JxcxLgFAGSMj0h6USEZH-lGhbU3MdLe0kXvY1I-D00b56l1uy4bnt4gwIS-OfqlrAl3dNntQ38wnfGJ5pzuM6MTVcEoaj-9Ti5D2fDK986vc0wdV5fkzKpdNFe_OiYfjw_vi-di9fq0XMxXhea1SEVdW45ct8g5MlFNRQWVMLaeMUDkQmS1bAba2rZqRMtUa9qWWzGdMVWxlvExmQx3N2on98F1KnzLXjn5PF_J4w54M0WopgfMWRyyOvQxBmP_AAR5rFhuZa5YHiuWQ8WZuR8Yk584OBNk1M54bdYuGJ3kunf_0D9jtoLy</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Dziri, Ayyoub</creator><creator>Montagne, Alex</creator><creator>Roudet, Francine</creator><creator>Ziouche, Katir</creator><creator>Chicot, Didier</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5203-3168</orcidid><orcidid>https://orcid.org/0000-0002-8689-1013</orcidid><orcidid>https://orcid.org/0000-0002-3374-8133</orcidid><orcidid>https://orcid.org/0000-0001-5118-7870</orcidid></search><sort><creationdate>20230301</creationdate><title>Martens hardness of Constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation</title><author>Dziri, Ayyoub ; Montagne, Alex ; Roudet, Francine ; Ziouche, Katir ; Chicot, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constantan thin film</topic><topic>Engineering Sciences</topic><topic>Indentation size effect</topic><topic>Instrumented nanoindentation</topic><topic>Martens hardness</topic><topic>Tip defect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dziri, Ayyoub</creatorcontrib><creatorcontrib>Montagne, Alex</creatorcontrib><creatorcontrib>Roudet, Francine</creatorcontrib><creatorcontrib>Ziouche, Katir</creatorcontrib><creatorcontrib>Chicot, Didier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dziri, Ayyoub</au><au>Montagne, Alex</au><au>Roudet, Francine</au><au>Ziouche, Katir</au><au>Chicot, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martens hardness of Constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation</atitle><jtitle>Thin solid films</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>768</volume><spage>139712</spage><pages>139712-</pages><artnum>139712</artnum><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>•Hardness of the substrate changes according to the film thickness (Constantan).•Application of indentation size effect models allows an adequate representation of data.•Stability of constantan martens hardness value when considering the indenter tip defect.•The effect of cracks in substrate on film behaviours.•Containment of the film between indenter and substrate effect on film behaviours. This work presents a mechanical study by nanoindentation of Constantan thin films deposited by cathodic sputtering technique with an intermediate thin adhesion layer of titanium on a (100) silicon wafer substrate. A methodology based on a modified contact area function is proposed for a suitable processing of the nanoindentation data in order to extract the Martens hardness both of the substrate, titanium layer and Constantan films. The raw data of the substrate Martens hardness have been studied using the most useful models among them those of Nix &amp; Gao, Li &amp; Bradt and Bull &amp; Page showing a significant indentation size effect. However, when considering the tip defect length in the Martens hardness computation, the corrected values are found constant and no indentation size effect occurs. Within this objective, an accurate determination of the tip defect length is required. Its value has been determined both with a correlation between the contact area function of Oliver &amp; Pharr and the improved model of Chicot et al. and also with the self-calibration method proposed by Chicot et al. The tip defect length is afterwards implemented in the model of Jönsson &amp; Hogmark modified by Rahmoun et al. for the hardness determination of the titanium layer and the Constantan thin films. As a main result, the Martens hardness of the titanium layer and of the substrate are found equal to 8 GPa thus allowing to neglect the influence of the titanium layer in the film hardness determination. As a main result, the hardness of the 4 Constantan films is constant whereas the substrate hardness changes with the film thickness. This unexpected behavior is related to the brittleness of the substrate where cracks are observed at the interface and by the film compacting which is trapped between the rigid indenter and the hard substrate.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2023.139712</doi><orcidid>https://orcid.org/0000-0002-5203-3168</orcidid><orcidid>https://orcid.org/0000-0002-8689-1013</orcidid><orcidid>https://orcid.org/0000-0002-3374-8133</orcidid><orcidid>https://orcid.org/0000-0001-5118-7870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2023-03, Vol.768, p.139712, Article 139712
issn 0040-6090
1879-2731
language eng
recordid cdi_hal_primary_oai_HAL_hal_03951065v1
source ScienceDirect Freedom Collection
subjects Constantan thin film
Engineering Sciences
Indentation size effect
Instrumented nanoindentation
Martens hardness
Tip defect
title Martens hardness of Constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martens%20hardness%20of%20Constantan%20thin%20films%20on%20(100)%20Si%20wafer:%20Improvement%20in%20contact%20area%20function%20in%20nanoindentation&rft.jtitle=Thin%20solid%20films&rft.au=Dziri,%20Ayyoub&rft.date=2023-03-01&rft.volume=768&rft.spage=139712&rft.pages=139712-&rft.artnum=139712&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/j.tsf.2023.139712&rft_dat=%3Celsevier_hal_p%3ES0040609023000329%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-77f313cb1331246546064ef782011344820f280cffb694b2abebb3f4582a62b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true