Loading…

Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation

Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth =...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2021-11, Vol.9 (22), p.n/a
Main Authors: Ishii, Tomohiro, Bencheikh, Fatima, Forget, Sébastien, Chénais, Sébastien, Heinrich, Benoît, Kreher, David, Sosa Vargas, Lydia, Miyata, Kiyoshi, Onda, Ken, Fujihara, Takashi, Kéna‐Cohen, Stéphane, Mathevet, Fabrice, Adachi, Chihaya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33
cites cdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced optical materials
container_volume 9
creator Ishii, Tomohiro
Bencheikh, Fatima
Forget, Sébastien
Chénais, Sébastien
Heinrich, Benoît
Kreher, David
Sosa Vargas, Lydia
Miyata, Kiyoshi
Onda, Ken
Fujihara, Takashi
Kéna‐Cohen, Stéphane
Mathevet, Fabrice
Adachi, Chihaya
description Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC. This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.
doi_str_mv 10.1002/adom.202101048
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03966978v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598832488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElVhZbbExNBix0mcjFUptFKqIgSzdWM7JFVqF8cFuvEOvCFPQtqgwsZyf79zdXUQuqBkSAkJrkHZ1TAgASWUhMkR6gU0jQaUcHr8pz5F502zJKSFOEtD3kNqYkowUiucVc-l__r4nIP32uGZaSNIX1mDwSh8b2twlW-7B13DO-wX-Rb7UuOxNd7ZGtsCz22t5aZF8cJV2vg9d4ZOCqgbff6T--jpdvI4ng6yxd1sPMoGMox4MqCRBCK1TmmcShlxXkAYR4qpnGquOHBCoMhZwUMuFRSSqyCgimngiiW5ZKyPrrq7JdRi7aoVuK2wUInpKBO7GWFpHKc8eaUte9mxa2dfNrrxYmk3zrTviSBKk4QFYRv6aNhR0tmmcbo4nKVE7IwXO-PFwfhWkHaCt6rW239oMbpZzH-13yk_iM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598832488</pqid></control><display><type>article</type><title>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</title><source>Wiley</source><creator>Ishii, Tomohiro ; Bencheikh, Fatima ; Forget, Sébastien ; Chénais, Sébastien ; Heinrich, Benoît ; Kreher, David ; Sosa Vargas, Lydia ; Miyata, Kiyoshi ; Onda, Ken ; Fujihara, Takashi ; Kéna‐Cohen, Stéphane ; Mathevet, Fabrice ; Adachi, Chihaya</creator><creatorcontrib>Ishii, Tomohiro ; Bencheikh, Fatima ; Forget, Sébastien ; Chénais, Sébastien ; Heinrich, Benoît ; Kreher, David ; Sosa Vargas, Lydia ; Miyata, Kiyoshi ; Onda, Ken ; Fujihara, Takashi ; Kéna‐Cohen, Stéphane ; Mathevet, Fabrice ; Adachi, Chihaya</creatorcontrib><description>Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC. This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202101048</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bose-Einstein condensates ; Condensed Matter ; Dipole moments ; Electron states ; Excitons ; exciton‐polaritons ; liquid crystals ; Materials Science ; microcavities ; molecular orientation ; Optics ; Organic chemistry ; Orientation ; Physics ; polariton relaxation ; Polaritons ; Room temperature</subject><ispartof>Advanced optical materials, 2021-11, Vol.9 (22), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Copyright</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</citedby><cites>FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</cites><orcidid>0000-0002-0968-5224 ; 0000-0002-6077-3318 ; 0000-0001-6795-2733 ; 0000-0002-3556-2228 ; 0000-0002-0736-7919 ; 0000-0001-5065-2750 ; 0000-0001-6117-9604 ; 0000-0001-6748-1337 ; 0000-0003-1724-2009 ; 0000-0003-3225-6943 ; 0000-0002-3813-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03966978$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Tomohiro</creatorcontrib><creatorcontrib>Bencheikh, Fatima</creatorcontrib><creatorcontrib>Forget, Sébastien</creatorcontrib><creatorcontrib>Chénais, Sébastien</creatorcontrib><creatorcontrib>Heinrich, Benoît</creatorcontrib><creatorcontrib>Kreher, David</creatorcontrib><creatorcontrib>Sosa Vargas, Lydia</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><creatorcontrib>Fujihara, Takashi</creatorcontrib><creatorcontrib>Kéna‐Cohen, Stéphane</creatorcontrib><creatorcontrib>Mathevet, Fabrice</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><title>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</title><title>Advanced optical materials</title><description>Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC. This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.</description><subject>Bose-Einstein condensates</subject><subject>Condensed Matter</subject><subject>Dipole moments</subject><subject>Electron states</subject><subject>Excitons</subject><subject>exciton‐polaritons</subject><subject>liquid crystals</subject><subject>Materials Science</subject><subject>microcavities</subject><subject>molecular orientation</subject><subject>Optics</subject><subject>Organic chemistry</subject><subject>Orientation</subject><subject>Physics</subject><subject>polariton relaxation</subject><subject>Polaritons</subject><subject>Room temperature</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElVhZbbExNBix0mcjFUptFKqIgSzdWM7JFVqF8cFuvEOvCFPQtqgwsZyf79zdXUQuqBkSAkJrkHZ1TAgASWUhMkR6gU0jQaUcHr8pz5F502zJKSFOEtD3kNqYkowUiucVc-l__r4nIP32uGZaSNIX1mDwSh8b2twlW-7B13DO-wX-Rb7UuOxNd7ZGtsCz22t5aZF8cJV2vg9d4ZOCqgbff6T--jpdvI4ng6yxd1sPMoGMox4MqCRBCK1TmmcShlxXkAYR4qpnGquOHBCoMhZwUMuFRSSqyCgimngiiW5ZKyPrrq7JdRi7aoVuK2wUInpKBO7GWFpHKc8eaUte9mxa2dfNrrxYmk3zrTviSBKk4QFYRv6aNhR0tmmcbo4nKVE7IwXO-PFwfhWkHaCt6rW239oMbpZzH-13yk_iM8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ishii, Tomohiro</creator><creator>Bencheikh, Fatima</creator><creator>Forget, Sébastien</creator><creator>Chénais, Sébastien</creator><creator>Heinrich, Benoît</creator><creator>Kreher, David</creator><creator>Sosa Vargas, Lydia</creator><creator>Miyata, Kiyoshi</creator><creator>Onda, Ken</creator><creator>Fujihara, Takashi</creator><creator>Kéna‐Cohen, Stéphane</creator><creator>Mathevet, Fabrice</creator><creator>Adachi, Chihaya</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0968-5224</orcidid><orcidid>https://orcid.org/0000-0002-6077-3318</orcidid><orcidid>https://orcid.org/0000-0001-6795-2733</orcidid><orcidid>https://orcid.org/0000-0002-3556-2228</orcidid><orcidid>https://orcid.org/0000-0002-0736-7919</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0001-6748-1337</orcidid><orcidid>https://orcid.org/0000-0003-1724-2009</orcidid><orcidid>https://orcid.org/0000-0003-3225-6943</orcidid><orcidid>https://orcid.org/0000-0002-3813-1335</orcidid></search><sort><creationdate>20211101</creationdate><title>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</title><author>Ishii, Tomohiro ; Bencheikh, Fatima ; Forget, Sébastien ; Chénais, Sébastien ; Heinrich, Benoît ; Kreher, David ; Sosa Vargas, Lydia ; Miyata, Kiyoshi ; Onda, Ken ; Fujihara, Takashi ; Kéna‐Cohen, Stéphane ; Mathevet, Fabrice ; Adachi, Chihaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bose-Einstein condensates</topic><topic>Condensed Matter</topic><topic>Dipole moments</topic><topic>Electron states</topic><topic>Excitons</topic><topic>exciton‐polaritons</topic><topic>liquid crystals</topic><topic>Materials Science</topic><topic>microcavities</topic><topic>molecular orientation</topic><topic>Optics</topic><topic>Organic chemistry</topic><topic>Orientation</topic><topic>Physics</topic><topic>polariton relaxation</topic><topic>Polaritons</topic><topic>Room temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Tomohiro</creatorcontrib><creatorcontrib>Bencheikh, Fatima</creatorcontrib><creatorcontrib>Forget, Sébastien</creatorcontrib><creatorcontrib>Chénais, Sébastien</creatorcontrib><creatorcontrib>Heinrich, Benoît</creatorcontrib><creatorcontrib>Kreher, David</creatorcontrib><creatorcontrib>Sosa Vargas, Lydia</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><creatorcontrib>Fujihara, Takashi</creatorcontrib><creatorcontrib>Kéna‐Cohen, Stéphane</creatorcontrib><creatorcontrib>Mathevet, Fabrice</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Tomohiro</au><au>Bencheikh, Fatima</au><au>Forget, Sébastien</au><au>Chénais, Sébastien</au><au>Heinrich, Benoît</au><au>Kreher, David</au><au>Sosa Vargas, Lydia</au><au>Miyata, Kiyoshi</au><au>Onda, Ken</au><au>Fujihara, Takashi</au><au>Kéna‐Cohen, Stéphane</au><au>Mathevet, Fabrice</au><au>Adachi, Chihaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</atitle><jtitle>Advanced optical materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>9</volume><issue>22</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC. This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202101048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0968-5224</orcidid><orcidid>https://orcid.org/0000-0002-6077-3318</orcidid><orcidid>https://orcid.org/0000-0001-6795-2733</orcidid><orcidid>https://orcid.org/0000-0002-3556-2228</orcidid><orcidid>https://orcid.org/0000-0002-0736-7919</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0001-6748-1337</orcidid><orcidid>https://orcid.org/0000-0003-1724-2009</orcidid><orcidid>https://orcid.org/0000-0003-3225-6943</orcidid><orcidid>https://orcid.org/0000-0002-3813-1335</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-11, Vol.9 (22), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_hal_primary_oai_HAL_hal_03966978v1
source Wiley
subjects Bose-Einstein condensates
Condensed Matter
Dipole moments
Electron states
Excitons
exciton‐polaritons
liquid crystals
Materials Science
microcavities
molecular orientation
Optics
Organic chemistry
Orientation
Physics
polariton relaxation
Polaritons
Room temperature
title Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Light%E2%80%93Matter%20Interaction%20and%20Polariton%20Relaxation%20by%20the%20Control%20of%20Molecular%20Orientation&rft.jtitle=Advanced%20optical%20materials&rft.au=Ishii,%20Tomohiro&rft.date=2021-11-01&rft.volume=9&rft.issue=22&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202101048&rft_dat=%3Cproquest_hal_p%3E2598832488%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598832488&rft_id=info:pmid/&rfr_iscdi=true