Loading…
Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation
Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth =...
Saved in:
Published in: | Advanced optical materials 2021-11, Vol.9 (22), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33 |
container_end_page | n/a |
container_issue | 22 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 9 |
creator | Ishii, Tomohiro Bencheikh, Fatima Forget, Sébastien Chénais, Sébastien Heinrich, Benoît Kreher, David Sosa Vargas, Lydia Miyata, Kiyoshi Onda, Ken Fujihara, Takashi Kéna‐Cohen, Stéphane Mathevet, Fabrice Adachi, Chihaya |
description | Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC.
This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate. |
doi_str_mv | 10.1002/adom.202101048 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03966978v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598832488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElVhZbbExNBix0mcjFUptFKqIgSzdWM7JFVqF8cFuvEOvCFPQtqgwsZyf79zdXUQuqBkSAkJrkHZ1TAgASWUhMkR6gU0jQaUcHr8pz5F502zJKSFOEtD3kNqYkowUiucVc-l__r4nIP32uGZaSNIX1mDwSh8b2twlW-7B13DO-wX-Rb7UuOxNd7ZGtsCz22t5aZF8cJV2vg9d4ZOCqgbff6T--jpdvI4ng6yxd1sPMoGMox4MqCRBCK1TmmcShlxXkAYR4qpnGquOHBCoMhZwUMuFRSSqyCgimngiiW5ZKyPrrq7JdRi7aoVuK2wUInpKBO7GWFpHKc8eaUte9mxa2dfNrrxYmk3zrTviSBKk4QFYRv6aNhR0tmmcbo4nKVE7IwXO-PFwfhWkHaCt6rW239oMbpZzH-13yk_iM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598832488</pqid></control><display><type>article</type><title>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</title><source>Wiley</source><creator>Ishii, Tomohiro ; Bencheikh, Fatima ; Forget, Sébastien ; Chénais, Sébastien ; Heinrich, Benoît ; Kreher, David ; Sosa Vargas, Lydia ; Miyata, Kiyoshi ; Onda, Ken ; Fujihara, Takashi ; Kéna‐Cohen, Stéphane ; Mathevet, Fabrice ; Adachi, Chihaya</creator><creatorcontrib>Ishii, Tomohiro ; Bencheikh, Fatima ; Forget, Sébastien ; Chénais, Sébastien ; Heinrich, Benoît ; Kreher, David ; Sosa Vargas, Lydia ; Miyata, Kiyoshi ; Onda, Ken ; Fujihara, Takashi ; Kéna‐Cohen, Stéphane ; Mathevet, Fabrice ; Adachi, Chihaya</creatorcontrib><description>Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC.
This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202101048</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bose-Einstein condensates ; Condensed Matter ; Dipole moments ; Electron states ; Excitons ; exciton‐polaritons ; liquid crystals ; Materials Science ; microcavities ; molecular orientation ; Optics ; Organic chemistry ; Orientation ; Physics ; polariton relaxation ; Polaritons ; Room temperature</subject><ispartof>Advanced optical materials, 2021-11, Vol.9 (22), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Copyright</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</citedby><cites>FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</cites><orcidid>0000-0002-0968-5224 ; 0000-0002-6077-3318 ; 0000-0001-6795-2733 ; 0000-0002-3556-2228 ; 0000-0002-0736-7919 ; 0000-0001-5065-2750 ; 0000-0001-6117-9604 ; 0000-0001-6748-1337 ; 0000-0003-1724-2009 ; 0000-0003-3225-6943 ; 0000-0002-3813-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03966978$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Tomohiro</creatorcontrib><creatorcontrib>Bencheikh, Fatima</creatorcontrib><creatorcontrib>Forget, Sébastien</creatorcontrib><creatorcontrib>Chénais, Sébastien</creatorcontrib><creatorcontrib>Heinrich, Benoît</creatorcontrib><creatorcontrib>Kreher, David</creatorcontrib><creatorcontrib>Sosa Vargas, Lydia</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><creatorcontrib>Fujihara, Takashi</creatorcontrib><creatorcontrib>Kéna‐Cohen, Stéphane</creatorcontrib><creatorcontrib>Mathevet, Fabrice</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><title>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</title><title>Advanced optical materials</title><description>Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC.
This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.</description><subject>Bose-Einstein condensates</subject><subject>Condensed Matter</subject><subject>Dipole moments</subject><subject>Electron states</subject><subject>Excitons</subject><subject>exciton‐polaritons</subject><subject>liquid crystals</subject><subject>Materials Science</subject><subject>microcavities</subject><subject>molecular orientation</subject><subject>Optics</subject><subject>Organic chemistry</subject><subject>Orientation</subject><subject>Physics</subject><subject>polariton relaxation</subject><subject>Polaritons</subject><subject>Room temperature</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElVhZbbExNBix0mcjFUptFKqIgSzdWM7JFVqF8cFuvEOvCFPQtqgwsZyf79zdXUQuqBkSAkJrkHZ1TAgASWUhMkR6gU0jQaUcHr8pz5F502zJKSFOEtD3kNqYkowUiucVc-l__r4nIP32uGZaSNIX1mDwSh8b2twlW-7B13DO-wX-Rb7UuOxNd7ZGtsCz22t5aZF8cJV2vg9d4ZOCqgbff6T--jpdvI4ng6yxd1sPMoGMox4MqCRBCK1TmmcShlxXkAYR4qpnGquOHBCoMhZwUMuFRSSqyCgimngiiW5ZKyPrrq7JdRi7aoVuK2wUInpKBO7GWFpHKc8eaUte9mxa2dfNrrxYmk3zrTviSBKk4QFYRv6aNhR0tmmcbo4nKVE7IwXO-PFwfhWkHaCt6rW239oMbpZzH-13yk_iM8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ishii, Tomohiro</creator><creator>Bencheikh, Fatima</creator><creator>Forget, Sébastien</creator><creator>Chénais, Sébastien</creator><creator>Heinrich, Benoît</creator><creator>Kreher, David</creator><creator>Sosa Vargas, Lydia</creator><creator>Miyata, Kiyoshi</creator><creator>Onda, Ken</creator><creator>Fujihara, Takashi</creator><creator>Kéna‐Cohen, Stéphane</creator><creator>Mathevet, Fabrice</creator><creator>Adachi, Chihaya</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0968-5224</orcidid><orcidid>https://orcid.org/0000-0002-6077-3318</orcidid><orcidid>https://orcid.org/0000-0001-6795-2733</orcidid><orcidid>https://orcid.org/0000-0002-3556-2228</orcidid><orcidid>https://orcid.org/0000-0002-0736-7919</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0001-6748-1337</orcidid><orcidid>https://orcid.org/0000-0003-1724-2009</orcidid><orcidid>https://orcid.org/0000-0003-3225-6943</orcidid><orcidid>https://orcid.org/0000-0002-3813-1335</orcidid></search><sort><creationdate>20211101</creationdate><title>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</title><author>Ishii, Tomohiro ; Bencheikh, Fatima ; Forget, Sébastien ; Chénais, Sébastien ; Heinrich, Benoît ; Kreher, David ; Sosa Vargas, Lydia ; Miyata, Kiyoshi ; Onda, Ken ; Fujihara, Takashi ; Kéna‐Cohen, Stéphane ; Mathevet, Fabrice ; Adachi, Chihaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bose-Einstein condensates</topic><topic>Condensed Matter</topic><topic>Dipole moments</topic><topic>Electron states</topic><topic>Excitons</topic><topic>exciton‐polaritons</topic><topic>liquid crystals</topic><topic>Materials Science</topic><topic>microcavities</topic><topic>molecular orientation</topic><topic>Optics</topic><topic>Organic chemistry</topic><topic>Orientation</topic><topic>Physics</topic><topic>polariton relaxation</topic><topic>Polaritons</topic><topic>Room temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Tomohiro</creatorcontrib><creatorcontrib>Bencheikh, Fatima</creatorcontrib><creatorcontrib>Forget, Sébastien</creatorcontrib><creatorcontrib>Chénais, Sébastien</creatorcontrib><creatorcontrib>Heinrich, Benoît</creatorcontrib><creatorcontrib>Kreher, David</creatorcontrib><creatorcontrib>Sosa Vargas, Lydia</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><creatorcontrib>Fujihara, Takashi</creatorcontrib><creatorcontrib>Kéna‐Cohen, Stéphane</creatorcontrib><creatorcontrib>Mathevet, Fabrice</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Tomohiro</au><au>Bencheikh, Fatima</au><au>Forget, Sébastien</au><au>Chénais, Sébastien</au><au>Heinrich, Benoît</au><au>Kreher, David</au><au>Sosa Vargas, Lydia</au><au>Miyata, Kiyoshi</au><au>Onda, Ken</au><au>Fujihara, Takashi</au><au>Kéna‐Cohen, Stéphane</au><au>Mathevet, Fabrice</au><au>Adachi, Chihaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation</atitle><jtitle>Advanced optical materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>9</volume><issue>22</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Exciton‐polaritons, in which the electronic state of an excited organic molecule and a photonic state are strongly coupled, can form a Bose–Einstein condensate (BEC) at room temperature. However, so far, the reported thresholds of organic polariton BECs under optical excitation are as high as Pth = 11–500 μJ cm–2. One route toward lowering the condensation threshold is to increase the Rabi energy by aligning the molecular transition dipole moments. In this report, it is demonstrated that control of the orientation of a perylene‐based discotic dye, which is able to self‐organize in mesogenic columnar structures, can significantly enhance exciton–photon interaction and polariton relaxation rate in optical cavities. These results show the importance of the molecular orientation for strong light–matter interactions and provide a promising strategy toward the realization of an organic low threshold polariton BEC system and electrically driven organic polariton BEC.
This work demonstrates for the first time experimentally, that the orientation of the transition dipole moments is one of the key factors for the accelerating polariton relaxation. These outcomes show that the in‐plane orientation of dipole moments is a promising strategy for lowering the Bose–Einstein condensate (BEC) threshold mainly related to the polariton relaxation rate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202101048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0968-5224</orcidid><orcidid>https://orcid.org/0000-0002-6077-3318</orcidid><orcidid>https://orcid.org/0000-0001-6795-2733</orcidid><orcidid>https://orcid.org/0000-0002-3556-2228</orcidid><orcidid>https://orcid.org/0000-0002-0736-7919</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0001-6748-1337</orcidid><orcidid>https://orcid.org/0000-0003-1724-2009</orcidid><orcidid>https://orcid.org/0000-0003-3225-6943</orcidid><orcidid>https://orcid.org/0000-0002-3813-1335</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2021-11, Vol.9 (22), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03966978v1 |
source | Wiley |
subjects | Bose-Einstein condensates Condensed Matter Dipole moments Electron states Excitons exciton‐polaritons liquid crystals Materials Science microcavities molecular orientation Optics Organic chemistry Orientation Physics polariton relaxation Polaritons Room temperature |
title | Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Light%E2%80%93Matter%20Interaction%20and%20Polariton%20Relaxation%20by%20the%20Control%20of%20Molecular%20Orientation&rft.jtitle=Advanced%20optical%20materials&rft.au=Ishii,%20Tomohiro&rft.date=2021-11-01&rft.volume=9&rft.issue=22&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202101048&rft_dat=%3Cproquest_hal_p%3E2598832488%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4578-15ca0cee9169cc577fa465d3db1e7d7a700afb3f747cdafc7d221d3ea7d38bc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598832488&rft_id=info:pmid/&rfr_iscdi=true |