Loading…
Convergence in Nonlinear Optimal Sampled-Data Control Problems
Consider, on the one part, a general nonlinear finite-dimensional optimal control problem and assume that it has a unique solution x^*. On the other part, consider the sampled-data control version of it. Under appropriate assumptions, we prove that the optimal state of the sampled-data problem conve...
Saved in:
Published in: | IEEE transactions on automatic control 2024-10, Vol.69 (10), p.7144-7151 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-909075a8ef4be7a7d0d880e2d3100452bb81b8bcd3a15133868218917de3c1363 |
container_end_page | 7151 |
container_issue | 10 |
container_start_page | 7144 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Bourdin, Loic Trelat, Emmanuel |
description | Consider, on the one part, a general nonlinear finite-dimensional optimal control problem and assume that it has a unique solution x^*. On the other part, consider the sampled-data control version of it. Under appropriate assumptions, we prove that the optimal state of the sampled-data problem converges uniformly to x^* as the norm of the partition tends to zero. Moreover, applying the Pontryagin maximum principle (PMP) to both problems, we prove that, if x^* has a unique weak extremal lift with a costate p that is normal, then the costate of the sampled-data problem converges uniformly to p. In other words, under a normality assumption, control sampling commutes, at the limit of small partitions, with the application of the PMP. |
doi_str_mv | 10.1109/TAC.2024.3394650 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03975698v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10509764</ieee_id><sourcerecordid>3110477538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-909075a8ef4be7a7d0d880e2d3100452bb81b8bcd3a15133868218917de3c1363</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwEPHlIndmP7O5FKPWjQrGC9bxskq2mpNm4SQv-e7dExNMww_O-DA8hlwgTRNC3q-lsQoHyCWOaZwKOyAiFUCkVlB2TEQCqVFOVnZKzrtvENeMcR-Ru5pu9Cx-uKVxSNcmLb-qqcTYky7avtrZO3uy2rV2Z3tveJpHug6-T1-Dz2m27c3KytnXnLn7nmLw_Pqxm83SxfHqeTRdpwSj2qQYNUljl1jx30soSSqXA0ZIhABc0zxXmKi9KZlEgYypTFJVGWTpWIMvYmNwMvZ-2Nm2Ij4Vv421l5tOFOdyAaSkyrfYY2euBbYP_2rmuNxu_C018z7CoikspmIoUDFQRfNcFt_6rRTAHoyYaNQej5tdojFwNkco59w8XoGXG2Q-lLG7j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110477538</pqid></control><display><type>article</type><title>Convergence in Nonlinear Optimal Sampled-Data Control Problems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bourdin, Loic ; Trelat, Emmanuel</creator><creatorcontrib>Bourdin, Loic ; Trelat, Emmanuel</creatorcontrib><description><![CDATA[Consider, on the one part, a general nonlinear finite-dimensional optimal control problem and assume that it has a unique solution <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula>. On the other part, consider the sampled-data control version of it. Under appropriate assumptions, we prove that the optimal state of the sampled-data problem converges uniformly to <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula> as the norm of the partition tends to zero. Moreover, applying the Pontryagin maximum principle (PMP) to both problems, we prove that, if <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula> has a unique weak extremal lift with a costate <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> that is normal, then the costate of the sampled-data problem converges uniformly to <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula>. In other words, under a normality assumption, control sampling commutes, at the limit of small partitions, with the application of the PMP.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3394650</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Costs ; Filippov approach ; Mathematics ; Nonlinear control ; Normality ; Optimal control ; Optimization and Control ; Pontryagin maximum principle (PMP) ; Pontryagin principle ; sampled-data control ; Trajectory ; Uniqueness</subject><ispartof>IEEE transactions on automatic control, 2024-10, Vol.69 (10), p.7144-7151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-909075a8ef4be7a7d0d880e2d3100452bb81b8bcd3a15133868218917de3c1363</cites><orcidid>0000-0002-2979-0291 ; 0000-0002-0656-7003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10509764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03975698$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourdin, Loic</creatorcontrib><creatorcontrib>Trelat, Emmanuel</creatorcontrib><title>Convergence in Nonlinear Optimal Sampled-Data Control Problems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[Consider, on the one part, a general nonlinear finite-dimensional optimal control problem and assume that it has a unique solution <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula>. On the other part, consider the sampled-data control version of it. Under appropriate assumptions, we prove that the optimal state of the sampled-data problem converges uniformly to <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula> as the norm of the partition tends to zero. Moreover, applying the Pontryagin maximum principle (PMP) to both problems, we prove that, if <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula> has a unique weak extremal lift with a costate <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> that is normal, then the costate of the sampled-data problem converges uniformly to <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula>. In other words, under a normality assumption, control sampling commutes, at the limit of small partitions, with the application of the PMP.]]></description><subject>Convergence</subject><subject>Costs</subject><subject>Filippov approach</subject><subject>Mathematics</subject><subject>Nonlinear control</subject><subject>Normality</subject><subject>Optimal control</subject><subject>Optimization and Control</subject><subject>Pontryagin maximum principle (PMP)</subject><subject>Pontryagin principle</subject><subject>sampled-data control</subject><subject>Trajectory</subject><subject>Uniqueness</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFbvHjwEPHlIndmP7O5FKPWjQrGC9bxskq2mpNm4SQv-e7dExNMww_O-DA8hlwgTRNC3q-lsQoHyCWOaZwKOyAiFUCkVlB2TEQCqVFOVnZKzrtvENeMcR-Ru5pu9Cx-uKVxSNcmLb-qqcTYky7avtrZO3uy2rV2Z3tveJpHug6-T1-Dz2m27c3KytnXnLn7nmLw_Pqxm83SxfHqeTRdpwSj2qQYNUljl1jx30soSSqXA0ZIhABc0zxXmKi9KZlEgYypTFJVGWTpWIMvYmNwMvZ-2Nm2Ij4Vv421l5tOFOdyAaSkyrfYY2euBbYP_2rmuNxu_C018z7CoikspmIoUDFQRfNcFt_6rRTAHoyYaNQej5tdojFwNkco59w8XoGXG2Q-lLG7j</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bourdin, Loic</creator><creator>Trelat, Emmanuel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2979-0291</orcidid><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid></search><sort><creationdate>20241001</creationdate><title>Convergence in Nonlinear Optimal Sampled-Data Control Problems</title><author>Bourdin, Loic ; Trelat, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-909075a8ef4be7a7d0d880e2d3100452bb81b8bcd3a15133868218917de3c1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Costs</topic><topic>Filippov approach</topic><topic>Mathematics</topic><topic>Nonlinear control</topic><topic>Normality</topic><topic>Optimal control</topic><topic>Optimization and Control</topic><topic>Pontryagin maximum principle (PMP)</topic><topic>Pontryagin principle</topic><topic>sampled-data control</topic><topic>Trajectory</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdin, Loic</creatorcontrib><creatorcontrib>Trelat, Emmanuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdin, Loic</au><au>Trelat, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence in Nonlinear Optimal Sampled-Data Control Problems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>69</volume><issue>10</issue><spage>7144</spage><epage>7151</epage><pages>7144-7151</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[Consider, on the one part, a general nonlinear finite-dimensional optimal control problem and assume that it has a unique solution <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula>. On the other part, consider the sampled-data control version of it. Under appropriate assumptions, we prove that the optimal state of the sampled-data problem converges uniformly to <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula> as the norm of the partition tends to zero. Moreover, applying the Pontryagin maximum principle (PMP) to both problems, we prove that, if <inline-formula><tex-math notation="LaTeX">x^*</tex-math></inline-formula> has a unique weak extremal lift with a costate <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> that is normal, then the costate of the sampled-data problem converges uniformly to <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula>. In other words, under a normality assumption, control sampling commutes, at the limit of small partitions, with the application of the PMP.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3394650</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2979-0291</orcidid><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-10, Vol.69 (10), p.7144-7151 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03975698v1 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Convergence Costs Filippov approach Mathematics Nonlinear control Normality Optimal control Optimization and Control Pontryagin maximum principle (PMP) Pontryagin principle sampled-data control Trajectory Uniqueness |
title | Convergence in Nonlinear Optimal Sampled-Data Control Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20in%20Nonlinear%20Optimal%20Sampled-Data%20Control%20Problems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bourdin,%20Loic&rft.date=2024-10-01&rft.volume=69&rft.issue=10&rft.spage=7144&rft.epage=7151&rft.pages=7144-7151&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3394650&rft_dat=%3Cproquest_hal_p%3E3110477538%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-909075a8ef4be7a7d0d880e2d3100452bb81b8bcd3a15133868218917de3c1363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110477538&rft_id=info:pmid/&rft_ieee_id=10509764&rfr_iscdi=true |