Loading…

Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network

In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the inter...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2023-02, Vol.11 (2), p.364
Main Authors: Zamouche, Meriem, Tahraoui, Hichem, Laggoun, Zakaria, Mechati, Sabrina, Chemchmi, Rayene, Kanjal, Muhammad Imran, Amrane, Abdeltif, Hadadi, Amina, Mouni, Lotfi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43
cites cdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43
container_end_page
container_issue 2
container_start_page 364
container_title Processes
container_volume 11
creator Zamouche, Meriem
Tahraoui, Hichem
Laggoun, Zakaria
Mechati, Sabrina
Chemchmi, Rayene
Kanjal, Muhammad Imran
Amrane, Abdeltif
Hadadi, Amina
Mouni, Lotfi
description In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).
doi_str_mv 10.3390/pr11020364
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03975991v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742893462</galeid><sourcerecordid>A742893462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</originalsourceid><addsrcrecordid>eNpNUdtKw0AQDaKgaF_8goAvVqjuJclmfSulWiFVQX1e9qpbk2y72Sj16922os48nLmcM8wwSXIKwSXGFFwtPYQAAVxke8kRQoiMKIFk_198mAy6bgGiUYjLvDhKXh-WwTb2iwfr2pS3Kn30Wlm5TZ1JnwIXtrZhvUmmTV931lit0squeqvSuW6E561Oz6fVfHidjn2IfWl5nd7r3m8hfDr_fpIcGF53evCDx8nLzfR5MhtVD7d3k3E1krgow8iYiJwSRYmUQHKQS4SoUJkQUCmMc8yJKUouiRAm15mIR-UcUyVIIY3O8HEy3M194zVbettwv2aOWzYbV2xTA5iSnFL4ASP3bMdderfqdRfYwvW-jesxRAgt8qwENLIud6xXXmtmW-OC5zK60o2VrtXGxvqYZKikOCtQFFzsBNK7rvPa_O4BAds8iv09Cn8DUTSE5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779654809</pqid></control><display><type>article</type><title>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</title><source>Publicly Available Content Database</source><creator>Zamouche, Meriem ; Tahraoui, Hichem ; Laggoun, Zakaria ; Mechati, Sabrina ; Chemchmi, Rayene ; Kanjal, Muhammad Imran ; Amrane, Abdeltif ; Hadadi, Amina ; Mouni, Lotfi</creator><creatorcontrib>Zamouche, Meriem ; Tahraoui, Hichem ; Laggoun, Zakaria ; Mechati, Sabrina ; Chemchmi, Rayene ; Kanjal, Muhammad Imran ; Amrane, Abdeltif ; Hadadi, Amina ; Mouni, Lotfi</creatorcontrib><description>In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11020364</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Analysis ; Aqueous solutions ; Artificial neural networks ; Chemical precipitation ; Chemical Sciences ; Emulsification ; Engineering Sciences ; Hexanes ; Liquid membrane extraction ; Liquid membranes ; Mathematical models ; Metals ; n-Hexane ; Neural networks ; Nitric acid ; Optimization ; Pollutants ; Root-mean-square errors ; Solvent extraction processes ; Sorbitan ; Stirring ; Surfactants ; Training</subject><ispartof>Processes, 2023-02, Vol.11 (2), p.364</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</citedby><cites>FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</cites><orcidid>0000-0003-2622-2384 ; 0000-0002-5259-2357 ; 0000-0001-6026-4049 ; 0000-0003-1139-2129 ; 0000-0003-2209-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779654809/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779654809?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03975991$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zamouche, Meriem</creatorcontrib><creatorcontrib>Tahraoui, Hichem</creatorcontrib><creatorcontrib>Laggoun, Zakaria</creatorcontrib><creatorcontrib>Mechati, Sabrina</creatorcontrib><creatorcontrib>Chemchmi, Rayene</creatorcontrib><creatorcontrib>Kanjal, Muhammad Imran</creatorcontrib><creatorcontrib>Amrane, Abdeltif</creatorcontrib><creatorcontrib>Hadadi, Amina</creatorcontrib><creatorcontrib>Mouni, Lotfi</creatorcontrib><title>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</title><title>Processes</title><description>In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).</description><subject>Acids</subject><subject>Analysis</subject><subject>Aqueous solutions</subject><subject>Artificial neural networks</subject><subject>Chemical precipitation</subject><subject>Chemical Sciences</subject><subject>Emulsification</subject><subject>Engineering Sciences</subject><subject>Hexanes</subject><subject>Liquid membrane extraction</subject><subject>Liquid membranes</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>n-Hexane</subject><subject>Neural networks</subject><subject>Nitric acid</subject><subject>Optimization</subject><subject>Pollutants</subject><subject>Root-mean-square errors</subject><subject>Solvent extraction processes</subject><subject>Sorbitan</subject><subject>Stirring</subject><subject>Surfactants</subject><subject>Training</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUdtKw0AQDaKgaF_8goAvVqjuJclmfSulWiFVQX1e9qpbk2y72Sj16922os48nLmcM8wwSXIKwSXGFFwtPYQAAVxke8kRQoiMKIFk_198mAy6bgGiUYjLvDhKXh-WwTb2iwfr2pS3Kn30Wlm5TZ1JnwIXtrZhvUmmTV931lit0squeqvSuW6E561Oz6fVfHidjn2IfWl5nd7r3m8hfDr_fpIcGF53evCDx8nLzfR5MhtVD7d3k3E1krgow8iYiJwSRYmUQHKQS4SoUJkQUCmMc8yJKUouiRAm15mIR-UcUyVIIY3O8HEy3M194zVbettwv2aOWzYbV2xTA5iSnFL4ASP3bMdderfqdRfYwvW-jesxRAgt8qwENLIud6xXXmtmW-OC5zK60o2VrtXGxvqYZKikOCtQFFzsBNK7rvPa_O4BAds8iv09Cn8DUTSE5Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zamouche, Meriem</creator><creator>Tahraoui, Hichem</creator><creator>Laggoun, Zakaria</creator><creator>Mechati, Sabrina</creator><creator>Chemchmi, Rayene</creator><creator>Kanjal, Muhammad Imran</creator><creator>Amrane, Abdeltif</creator><creator>Hadadi, Amina</creator><creator>Mouni, Lotfi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2622-2384</orcidid><orcidid>https://orcid.org/0000-0002-5259-2357</orcidid><orcidid>https://orcid.org/0000-0001-6026-4049</orcidid><orcidid>https://orcid.org/0000-0003-1139-2129</orcidid><orcidid>https://orcid.org/0000-0003-2209-6405</orcidid></search><sort><creationdate>20230201</creationdate><title>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</title><author>Zamouche, Meriem ; Tahraoui, Hichem ; Laggoun, Zakaria ; Mechati, Sabrina ; Chemchmi, Rayene ; Kanjal, Muhammad Imran ; Amrane, Abdeltif ; Hadadi, Amina ; Mouni, Lotfi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Aqueous solutions</topic><topic>Artificial neural networks</topic><topic>Chemical precipitation</topic><topic>Chemical Sciences</topic><topic>Emulsification</topic><topic>Engineering Sciences</topic><topic>Hexanes</topic><topic>Liquid membrane extraction</topic><topic>Liquid membranes</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>n-Hexane</topic><topic>Neural networks</topic><topic>Nitric acid</topic><topic>Optimization</topic><topic>Pollutants</topic><topic>Root-mean-square errors</topic><topic>Solvent extraction processes</topic><topic>Sorbitan</topic><topic>Stirring</topic><topic>Surfactants</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamouche, Meriem</creatorcontrib><creatorcontrib>Tahraoui, Hichem</creatorcontrib><creatorcontrib>Laggoun, Zakaria</creatorcontrib><creatorcontrib>Mechati, Sabrina</creatorcontrib><creatorcontrib>Chemchmi, Rayene</creatorcontrib><creatorcontrib>Kanjal, Muhammad Imran</creatorcontrib><creatorcontrib>Amrane, Abdeltif</creatorcontrib><creatorcontrib>Hadadi, Amina</creatorcontrib><creatorcontrib>Mouni, Lotfi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamouche, Meriem</au><au>Tahraoui, Hichem</au><au>Laggoun, Zakaria</au><au>Mechati, Sabrina</au><au>Chemchmi, Rayene</au><au>Kanjal, Muhammad Imran</au><au>Amrane, Abdeltif</au><au>Hadadi, Amina</au><au>Mouni, Lotfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</atitle><jtitle>Processes</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>364</spage><pages>364-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11020364</doi><orcidid>https://orcid.org/0000-0003-2622-2384</orcidid><orcidid>https://orcid.org/0000-0002-5259-2357</orcidid><orcidid>https://orcid.org/0000-0001-6026-4049</orcidid><orcidid>https://orcid.org/0000-0003-1139-2129</orcidid><orcidid>https://orcid.org/0000-0003-2209-6405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-02, Vol.11 (2), p.364
issn 2227-9717
2227-9717
language eng
recordid cdi_hal_primary_oai_HAL_hal_03975991v1
source Publicly Available Content Database
subjects Acids
Analysis
Aqueous solutions
Artificial neural networks
Chemical precipitation
Chemical Sciences
Emulsification
Engineering Sciences
Hexanes
Liquid membrane extraction
Liquid membranes
Mathematical models
Metals
n-Hexane
Neural networks
Nitric acid
Optimization
Pollutants
Root-mean-square errors
Solvent extraction processes
Sorbitan
Stirring
Surfactants
Training
title Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20Prediction%20of%20Stability%20of%20Emulsified%20Liquid%20Membrane%20(ELM):%20Artificial%20Neural%20Network&rft.jtitle=Processes&rft.au=Zamouche,%20Meriem&rft.date=2023-02-01&rft.volume=11&rft.issue=2&rft.spage=364&rft.pages=364-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11020364&rft_dat=%3Cgale_hal_p%3EA742893462%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779654809&rft_id=info:pmid/&rft_galeid=A742893462&rfr_iscdi=true