Loading…
Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network
In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the inter...
Saved in:
Published in: | Processes 2023-02, Vol.11 (2), p.364 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43 |
container_end_page | |
container_issue | 2 |
container_start_page | 364 |
container_title | Processes |
container_volume | 11 |
creator | Zamouche, Meriem Tahraoui, Hichem Laggoun, Zakaria Mechati, Sabrina Chemchmi, Rayene Kanjal, Muhammad Imran Amrane, Abdeltif Hadadi, Amina Mouni, Lotfi |
description | In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406). |
doi_str_mv | 10.3390/pr11020364 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03975991v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742893462</galeid><sourcerecordid>A742893462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</originalsourceid><addsrcrecordid>eNpNUdtKw0AQDaKgaF_8goAvVqjuJclmfSulWiFVQX1e9qpbk2y72Sj16922os48nLmcM8wwSXIKwSXGFFwtPYQAAVxke8kRQoiMKIFk_198mAy6bgGiUYjLvDhKXh-WwTb2iwfr2pS3Kn30Wlm5TZ1JnwIXtrZhvUmmTV931lit0squeqvSuW6E561Oz6fVfHidjn2IfWl5nd7r3m8hfDr_fpIcGF53evCDx8nLzfR5MhtVD7d3k3E1krgow8iYiJwSRYmUQHKQS4SoUJkQUCmMc8yJKUouiRAm15mIR-UcUyVIIY3O8HEy3M194zVbettwv2aOWzYbV2xTA5iSnFL4ASP3bMdderfqdRfYwvW-jesxRAgt8qwENLIud6xXXmtmW-OC5zK60o2VrtXGxvqYZKikOCtQFFzsBNK7rvPa_O4BAds8iv09Cn8DUTSE5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779654809</pqid></control><display><type>article</type><title>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</title><source>Publicly Available Content Database</source><creator>Zamouche, Meriem ; Tahraoui, Hichem ; Laggoun, Zakaria ; Mechati, Sabrina ; Chemchmi, Rayene ; Kanjal, Muhammad Imran ; Amrane, Abdeltif ; Hadadi, Amina ; Mouni, Lotfi</creator><creatorcontrib>Zamouche, Meriem ; Tahraoui, Hichem ; Laggoun, Zakaria ; Mechati, Sabrina ; Chemchmi, Rayene ; Kanjal, Muhammad Imran ; Amrane, Abdeltif ; Hadadi, Amina ; Mouni, Lotfi</creatorcontrib><description>In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11020364</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Analysis ; Aqueous solutions ; Artificial neural networks ; Chemical precipitation ; Chemical Sciences ; Emulsification ; Engineering Sciences ; Hexanes ; Liquid membrane extraction ; Liquid membranes ; Mathematical models ; Metals ; n-Hexane ; Neural networks ; Nitric acid ; Optimization ; Pollutants ; Root-mean-square errors ; Solvent extraction processes ; Sorbitan ; Stirring ; Surfactants ; Training</subject><ispartof>Processes, 2023-02, Vol.11 (2), p.364</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</citedby><cites>FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</cites><orcidid>0000-0003-2622-2384 ; 0000-0002-5259-2357 ; 0000-0001-6026-4049 ; 0000-0003-1139-2129 ; 0000-0003-2209-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779654809/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779654809?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03975991$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zamouche, Meriem</creatorcontrib><creatorcontrib>Tahraoui, Hichem</creatorcontrib><creatorcontrib>Laggoun, Zakaria</creatorcontrib><creatorcontrib>Mechati, Sabrina</creatorcontrib><creatorcontrib>Chemchmi, Rayene</creatorcontrib><creatorcontrib>Kanjal, Muhammad Imran</creatorcontrib><creatorcontrib>Amrane, Abdeltif</creatorcontrib><creatorcontrib>Hadadi, Amina</creatorcontrib><creatorcontrib>Mouni, Lotfi</creatorcontrib><title>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</title><title>Processes</title><description>In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).</description><subject>Acids</subject><subject>Analysis</subject><subject>Aqueous solutions</subject><subject>Artificial neural networks</subject><subject>Chemical precipitation</subject><subject>Chemical Sciences</subject><subject>Emulsification</subject><subject>Engineering Sciences</subject><subject>Hexanes</subject><subject>Liquid membrane extraction</subject><subject>Liquid membranes</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>n-Hexane</subject><subject>Neural networks</subject><subject>Nitric acid</subject><subject>Optimization</subject><subject>Pollutants</subject><subject>Root-mean-square errors</subject><subject>Solvent extraction processes</subject><subject>Sorbitan</subject><subject>Stirring</subject><subject>Surfactants</subject><subject>Training</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUdtKw0AQDaKgaF_8goAvVqjuJclmfSulWiFVQX1e9qpbk2y72Sj16922os48nLmcM8wwSXIKwSXGFFwtPYQAAVxke8kRQoiMKIFk_198mAy6bgGiUYjLvDhKXh-WwTb2iwfr2pS3Kn30Wlm5TZ1JnwIXtrZhvUmmTV931lit0squeqvSuW6E561Oz6fVfHidjn2IfWl5nd7r3m8hfDr_fpIcGF53evCDx8nLzfR5MhtVD7d3k3E1krgow8iYiJwSRYmUQHKQS4SoUJkQUCmMc8yJKUouiRAm15mIR-UcUyVIIY3O8HEy3M194zVbettwv2aOWzYbV2xTA5iSnFL4ASP3bMdderfqdRfYwvW-jesxRAgt8qwENLIud6xXXmtmW-OC5zK60o2VrtXGxvqYZKikOCtQFFzsBNK7rvPa_O4BAds8iv09Cn8DUTSE5Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zamouche, Meriem</creator><creator>Tahraoui, Hichem</creator><creator>Laggoun, Zakaria</creator><creator>Mechati, Sabrina</creator><creator>Chemchmi, Rayene</creator><creator>Kanjal, Muhammad Imran</creator><creator>Amrane, Abdeltif</creator><creator>Hadadi, Amina</creator><creator>Mouni, Lotfi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2622-2384</orcidid><orcidid>https://orcid.org/0000-0002-5259-2357</orcidid><orcidid>https://orcid.org/0000-0001-6026-4049</orcidid><orcidid>https://orcid.org/0000-0003-1139-2129</orcidid><orcidid>https://orcid.org/0000-0003-2209-6405</orcidid></search><sort><creationdate>20230201</creationdate><title>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</title><author>Zamouche, Meriem ; Tahraoui, Hichem ; Laggoun, Zakaria ; Mechati, Sabrina ; Chemchmi, Rayene ; Kanjal, Muhammad Imran ; Amrane, Abdeltif ; Hadadi, Amina ; Mouni, Lotfi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Aqueous solutions</topic><topic>Artificial neural networks</topic><topic>Chemical precipitation</topic><topic>Chemical Sciences</topic><topic>Emulsification</topic><topic>Engineering Sciences</topic><topic>Hexanes</topic><topic>Liquid membrane extraction</topic><topic>Liquid membranes</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>n-Hexane</topic><topic>Neural networks</topic><topic>Nitric acid</topic><topic>Optimization</topic><topic>Pollutants</topic><topic>Root-mean-square errors</topic><topic>Solvent extraction processes</topic><topic>Sorbitan</topic><topic>Stirring</topic><topic>Surfactants</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamouche, Meriem</creatorcontrib><creatorcontrib>Tahraoui, Hichem</creatorcontrib><creatorcontrib>Laggoun, Zakaria</creatorcontrib><creatorcontrib>Mechati, Sabrina</creatorcontrib><creatorcontrib>Chemchmi, Rayene</creatorcontrib><creatorcontrib>Kanjal, Muhammad Imran</creatorcontrib><creatorcontrib>Amrane, Abdeltif</creatorcontrib><creatorcontrib>Hadadi, Amina</creatorcontrib><creatorcontrib>Mouni, Lotfi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamouche, Meriem</au><au>Tahraoui, Hichem</au><au>Laggoun, Zakaria</au><au>Mechati, Sabrina</au><au>Chemchmi, Rayene</au><au>Kanjal, Muhammad Imran</au><au>Amrane, Abdeltif</au><au>Hadadi, Amina</au><au>Mouni, Lotfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network</atitle><jtitle>Processes</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>364</spage><pages>364-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In this work, the emulsified liquid membrane (ELM) extraction process was studied as a technique for separating different pollutants from an aqueous solution. The emulsified liquid membrane used consisted of Sorbitan mono-oleate (Span 80) as a surfactant with n-hexane (C6H14) as a diluent; the internal phase used was nitric acid (HNO3). The major constraint in the implementation of the extraction process by an emulsified liquid membrane (ELM) is the stability of the emulsion. However, this study focused first on controlling the stability of the emulsion by optimizing many operational factors, which have a direct impact on the stability of the membrane. Among the important parameters that cause membrane breakage, the surfactant concentration, the emulsification time, and the stirring speed were demonstrated. The optimization results obtained showed that the rupture rate (Tr) decreased until reaching a minimum value of 0.07% at 2% of weight/weight of Span 80 concentration with an emulsification time of 3 min and a stirring speed of 250 rpm. On the other hand, the volume of the inner phase leaking into the outer phase was predicted using an artificial neural network (ANN). The evaluation criteria of the ANN model in terms of statistical coefficient and RMSE error revealed very interesting results and the performance of the model since the statistical coefficients were very high and close to 1 in the four phases (R_training = 0.99724; R_validation = 0.99802; R_test = 0.99852; R_all data = 0.99772), and also, statistical errors of RMSE were minimal (RMSE_training= 0.0378; RMSE_validation = 0.0420; RMSE_test = 0.0509; RMSE_all data = 0.0406).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11020364</doi><orcidid>https://orcid.org/0000-0003-2622-2384</orcidid><orcidid>https://orcid.org/0000-0002-5259-2357</orcidid><orcidid>https://orcid.org/0000-0001-6026-4049</orcidid><orcidid>https://orcid.org/0000-0003-1139-2129</orcidid><orcidid>https://orcid.org/0000-0003-2209-6405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-02, Vol.11 (2), p.364 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03975991v1 |
source | Publicly Available Content Database |
subjects | Acids Analysis Aqueous solutions Artificial neural networks Chemical precipitation Chemical Sciences Emulsification Engineering Sciences Hexanes Liquid membrane extraction Liquid membranes Mathematical models Metals n-Hexane Neural networks Nitric acid Optimization Pollutants Root-mean-square errors Solvent extraction processes Sorbitan Stirring Surfactants Training |
title | Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20Prediction%20of%20Stability%20of%20Emulsified%20Liquid%20Membrane%20(ELM):%20Artificial%20Neural%20Network&rft.jtitle=Processes&rft.au=Zamouche,%20Meriem&rft.date=2023-02-01&rft.volume=11&rft.issue=2&rft.spage=364&rft.pages=364-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11020364&rft_dat=%3Cgale_hal_p%3EA742893462%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-ffc36a97d97cc0ca05c229bd4bb1dd3353a7f68ac7bbf5e4b7175a39db76cfe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779654809&rft_id=info:pmid/&rft_galeid=A742893462&rfr_iscdi=true |